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Abstract

Abstraction can improve the sample effi-
ciency of reinforcement learning. However,
the process of abstraction inherently dis-
cards information, potentially compromising
an agent’s ability to represent high-value
policies. To mitigate this, we here introduce
combinations of state abstractions and op-
tions that are guaranteed to preserve the rep-
resentation of near-optimal policies. We first
define φ-relative options, a general formalism
for analyzing the value loss of options paired
with a state abstraction, and present neces-
sary and sufficient conditions for φ-relative
options to preserve near-optimal behavior in
any finite Markov Decision Process. We fur-
ther show that, under appropriate assump-
tions, φ-relative options can be composed to
induce hierarchical abstractions that are also
guaranteed to represent high-value policies.

1 INTRODUCTION

Learning to make high-quality decisions in complex
environments is challenging. To mitigate this diffi-
culty, knowledge can be incorporated into learning al-
gorithms through inductive biases, heuristics, or other
priors that provide information about the world. In re-
inforcement learning (RL), one powerful class of such
structures takes the form of abstractions, either of state
(what are the relevant properties of the world?) or
action (what correlated, long-horizon sequences of ac-
tions are useful?).

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

To make RL more tractable, abstractions throw away
information about the environment such as irrelevant
state features or ineffective sequences of actions. If
the abstractions are too aggressive, however, they de-
stroy an agent’s ability to solve tasks of interest. Thus,
there is a trade-off inherent in the role that abstrac-
tions play: they should 1) make learning easier, while
2) preserving enough information to support the dis-
covery of good behavioral policies. Indeed, prior work
has illustrated the potential for abstractions to support
both this first (Konidaris and Barto, 2007; Brunskill
and Li, 2014; Bacon et al., 2017) and second property
(Li et al., 2006; Van Roy, 2006; Hutter, 2014).

To realize the benefits of state and action abstraction,
it is common to make use of both. One approach builds
around MDP homomorphisms, introduced by Ravin-
dran and Barto (2002), based on the earlier work of
Givan et al. (1997) and Whitt (1978). Certain classes
of homomorphisms can lead to dramatic reductions
in the size of the model needed to describe the envi-
ronment while preserving representation of high value
policies. Ravindran and Barto (2003a, 2004) extend
these ideas to semi-Markovian environments based on
the options framework (Sutton et al., 1999), illustrat-
ing how approximate model reduction techniques can
be blended with hierarchical structures to form good
compact representation. Majeed and Hutter (2019)
carry out similar analysis in non-Markovian environ-
ments, again proving which conditions preserve value.
However, we lack a general theory of value preserv-
ing state-action abstractions, especially when abstract
actions are extended over multiple time steps. More
concretely, the following question remains open:

Which combinations of state abstractions and options
preserve representation of near-optimal policies?

The primary contribution of this work is new analy-
sis clarifying which combinations of state abstractions
(φ) and options (O) preserve representation of near-
optimal policies in finite Markovian environments.
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To perform this analysis, we first define φ-relative op-
tions, a general formalism for analyzing the value loss
of a state abstraction paired with a set of options. We
then prove four sufficient conditions, along with one
necessary condition, for φ-relative options to preserve
near-optimal behavior in any finite Markov Decision
Process (MDP) (Bellman, 1957; Puterman, 2014). We
further prove that φ-relative options can be composed
to induce a hierarchy that preserves near-optimal be-
havior under appropriate assumptions about the hi-
erarchy’s construction. We suggest these results can
support the development of principled methods that
learn and make use of value-preserving abstractions.

1.1 Background

We next provide background on state and action ab-
straction. We take the standard treatment of RL: an
agent learns to make decisions that maximize value
while interacting with an MDP denoted by the five
tuple (S,A, R, T, γ). For more on RL, see the book
by Sutton and Barto (2018), for more on MDPs, see
the book by Puterman (2014).

A state abstraction is an aggregation function that
projects the environmental state space into a smaller
one. With a smaller state space, algorithms can learn
with less computation, space, and samples (Singh
et al., 1995; Dearden and Boutilier, 1997; Dietterich,
2000b,a; Andre and Russell, 2002; Jong and Stone,
2005). However, throwing away information about
the state space can restrict an agent’s ability to rep-
resent good policies; as a trivial illustration of this,
consider the maximally-compressing state abstraction
that maps all original states in the environment to a
single abstract state. Only well-chosen types of state
abstraction are known to preserve representation of
good policies (Dean and Givan, 1997; Li et al., 2006;
Van Roy, 2006; Hutter, 2014; Abel et al., 2016, 2019;
Majeed and Hutter, 2019). We define a state abstrac-
tion as follows:

Definition 1 (State Abstraction): A state abstraction
φ : S → Sφ maps each ground state, s ∈ S, into an
abstract state, sφ ∈ Sφ.

Since the abstract state space is smaller than the orig-
inal MDP’s state space, we expect to lose information.
In the context of sequential decision making, it is nat-
ural to permit this information loss so long as RL al-
gorithms can still learn to make useful decisions (Abel
et al., 2019; Harutyunyan et al., 2019).

Next, we recall options, a popular formalism for orga-
nizing the action space of an agent.

Definition 2 (Option (Sutton et al., 1999)): An op-
tion o ∈ O is a triple (Io, βo, πo), where Io ⊆ S is a

subset of the state space denoting where the option ini-
tiates; βo ⊆ S, is a subset of the state space denoting
where the option terminates; and πo : S → ∆(A) is a
policy prescribed by the option o.

Options denote abstract actions; the three compo-
nents indicate where the option o can be executed (Io),
where it terminates (βo), and what to do in between
these two conditions (πo). Options are known to aid
in transfer (Konidaris and Barto, 2007, 2009; Brunskill
and Li, 2014; Topin et al., 2015), encourage better ex-
ploration (Şimşek and Barto, 2004, 2009; Brunskill and
Li, 2014; Bacon et al., 2017; Fruit and Lazaric, 2017;
Machado et al., 2017; Tiwari and Thomas, 2019; Jinnai
et al., 2019), and make planning more efficient (Mann
and Mannor, 2014; Mann et al., 2015). We define an
action abstraction in terms of options as follows:

Definition 3 (Action Abstraction): An action ab-
straction is any replacement of the primitive actions,
A, with a set of options O.

Thus, an RL algorithm paired with an action abstrac-
tion chooses from among the available options at each
time step, runs the option until termination, and then
chooses the next option. With O replacing the prim-
itive action space,1 we are no longer guaranteed to
be able to represent every policy and may destroy
an agent’s ability to discover a near-optimal policy.
If the primitive actions are included, any policy that
can be represented in the original state-action space
can still be represented. However, by including op-
tions and primitive actions, learning algorithms face a
larger branching factor, and must search the full space
of policies which can hurt learning performance (Jong
et al., 2008). Hence, it is often prudent to restrict the
action space only to a set of options to avoid blowing
up the search space. Ideally, we would make use of
options that both 1) preserve representation of good
policies, while 2) keeping the branching factor and in-
duced policy class small. Naturally, using the options
that always execute the optimal policy maximally sat-
isfies both properties, but are challenging to obtain.
Establishing a clear understanding of how this first
property can be satisfied under approximate knowl-
edge is the primary motivation of this work.

2 RELATED WORK

The study of abstraction in RL has a long and ex-
citing history, dating back to early work on approxi-
mating dynamic programs by Fox (1973) and Whitt
(1978, 1979), along with the early work on hierar-

1In this work, we are uninterested in degenerate op-
tions (Bacon et al., 2017; Harb et al., 2018) that alias indi-
vidual primitive actions (Io = βo = S, ∃a : πo(a | s) = 1).
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chical RL (Dayan and Hinton, 1993; Wiering and
Schmidhuber, 1997; Parr and Russell, 1998; Dietterich,
2000a), options (Sutton et al., 1999), and state ab-
straction (Tsitsiklis and Van Roy, 1996; Dean and Gi-
van, 1997; Andre and Russell, 2002; Li et al., 2006).
This literature is vast; we here concentrate on work
that is focused on abstractions that aim to retain rep-
resentation of near-optimal behavior. We divide this
summary into each of state, action, joint state-action,
and hierarchical abstraction.

State Abstraction. The work of Whitt (1978,
1979) paved the way for understanding the value loss
of state abstraction in MDPs. Later, Dean and Gi-
van (1997) developed a method for finding states that
behave similarly to one another via the bisimulation
property (Larsen and Skou, 1991). Many subsequent
works have explored bisimulation for abstraction, in-
cluding defining metrics for finite (Ferns et al., 2004;
Castro and Precup, 2011; Castro, 2019) and infinite
MDPs (Ferns et al., 2006; Taylor et al., 2008). In a
similar vein, Li et al. (2006) provide a unifying frame-
work for state abstraction in MDPs, examining when
such abstractions will preserve optimal behavior and
affect existing convergence guarantees of well-known
RL algorithms. Recent work has continued to clarify
the conditions under which state abstractions preserve
value in MDPs (Jiang et al., 2015a; Abel et al., 2016),
non-Markovian environments (Hutter, 2014), planning
algorithms (Hostetler et al., 2014; Jiang et al., 2014;
Anand et al., 2015) and lifelong RL (Abel et al., 2018).
A related and important body of work studies the
problem of selecting a state abstraction from a given
class (Maillard et al., 2013; Odalric-Ambrym et al.,
2013; Jiang et al., 2015a; Ortner et al., 2019).

Action Abstraction. Little is known about which
kinds of options or action abstractions preserve value;
this stems largely from the fact that most prior stud-
ies of options consider the setting where options are
added to the primitive actions, so Aabstract = A ∪ O.
Since the primitive actions are included, the value loss
is always zero as the full space of policies is still rep-
resentable. Brunskill and Li (2014) study the problem
of learning options that improve sample efficiency in
lifelong RL. Under mild assumptions, their algorithm
finds options that let will match some default sample
complexity (without options). However, in order to
realize the benefits of options, it is important to con-
sider the removal of primitive actions—otherwise, RL
algorithms can still represent the full space of policies,
and so learning speed may suffer (Jong et al., 2008).

A few previous works study value preservation in the
case where options replace the primitive actions. Most
recently, Mann and Mannor (2014); Mann et al. (2015)

investigate the effect of options on approximate plan-
ning algorithms. Their analysis considers options that
use ε-optimal policies and are guaranteed to run for
a large number of time steps, ensuring that few mis-
takes are made by each option. The key result of Mann
et al. (2015) characterizes the convergence rate of value
iteration using these kinds of options, with this rate
depending directly on the sub-optimality and length
of the options. Lehnert et al. (2018) explore the im-
pact of horizon length on representation of value func-
tions. They find that the value loss of any policy that
optimizes with respect to an artificially-short horizon
can achieve value similar to that of policies that take
into account the full horizon, building on the results of
Jiang et al. (2015b). Similar analysis is conducted in
the case of well connected subsets of states, paralleling
our treatment of state abstractions here.

State-Action Abstraction. Together, state and
action abstractions can distill complex problems into
simple ones (Jonsson and Barto, 2001; Ciosek and Sil-
ver, 2015). One popular approach builds around MDP
homomorphisms (Ravindran and Barto, 2002, 2003a,b,
2004; Ravindran, 2003). MDP homomorphisms com-
press the MDP by collapsing state-action pairs that
can be treated as equivalent. The recent work by Ma-
jeed and Hutter (2019) extends this analysis to non-
Markovian settings, proving the existence of several
classes of value preserving homomorphisms. The key
difference between their results and the analysis we
present here is our close attachment to the options
formalism. Indeed, as we will show, our framework for
state-action abstractions can capture MDP homomor-
phisms in a sense.

Separately, Bai and Russell (2017) develop a Monte
Carlo planning algorithm that incorporates state and
action abstractions to efficiently solve the Partially
Observable MDP (Kaelbling et al., 1998) induced by
the abstractions. Theorem 1 from Bai and Russell
(2017) shows that the value loss of their approach is
bounded as a function of the state aggregation error
(Hostetler et al., 2014), and Theorem 2 shows their al-
gorithm converges to a recursively optimal policy for
given state-action abstractions. Our results are closely
related, but capture broad classes of state-action ab-
straction (Theorem 1) and target global optimality,
rather than recursive optimality (Theorem 3).

Hierarchical Abstraction. Just as state and ac-
tion abstractions enable a coarser view of a decision-
making problem through a single lens, many ap-
proaches accommodate abstraction at multiple lev-
els of granularity (Dayan and Hinton, 1993; Wiering
and Schmidhuber, 1997; Parr and Russell, 1998; Diet-
terich, 2000a; Barto and Mahadevan, 2003; Jong and
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Stone, 2008; Konidaris, 2016; Bai and Russell, 2017;
Konidaris et al., 2018; Levy et al., 2019). Most re-
cently, Nachum et al. (2019) introduce a scheme for
preserving near-optimal behavior in hierarchical ab-
stractions. Their main result studies the kinds of
multi-step state visitation distributions induced by dif-
ferent hierarchies. In particular, they show that hierar-
chies that can induce a sufficiently rich space of k-step
state distributions can represent near-optimal behav-
ior, too. Indeed, this represents the strongest existing
result for how to construct value-preserving hierarchies
based on approximate knowledge.

3 ANALYSIS: φ-RELATIVE
OPTIONS

We incorporate state and action abstraction into RL as
follows. When the environment transitions to a new
state s, the agent processes s via φ yielding the ab-
stract state, sφ. Then, the agent chooses an option
from among those that initiate in sφ, and follow the
chosen option’s policy until termination, where this
process repeats. In this way, an RL agent can reason
in terms of abstract state and action alone, without
knowing the true state or action space.

To analyze the value loss of these joint abstractions,
we first introduce φ-relative options, a novel means of
combining state abstractions with options.

Definition 4 (φ-Relative Option): For a given φ, an
option is said to be φ-relative if and only if there is
some sφ ∈ Sφ such that, for all s ∈ S:

Io(s) ≡ s ∈ sφ, βo(s) ≡ s 6∈ sφ, πo ∈ Πsφ , (1)

where Πsφ : {s | φ(s) = sφ} → ∆(A) is the set of
ground policies defined over states in sφ, and s ∈ sφ
is shorthand for s ∈ {s′ | φ(s′) = sφ, s

′ ∈ S}. We
denote Oφ as any non-empty set that 1) contains only
φ-relative options, and 2) contains at least one option
that initiates in each sφ ∈ Sφ.

Intuitively, these options initiate in exactly one ab-
stract state and terminate when the option policy
leaves the abstract state. We henceforth denote
(φ,Oφ) as a state abstraction paired with a set of φ-
relative options.

Example. Consider the classical Four Rooms do-
main pictured in Figure 1a. Suppose further that the
state abstraction φ turns each room into an abstract
state. Then any φ-relative option in this domain would
be one that initiates anywhere in one of the rooms and
terminates as soon as the agent leaves that room. The
only degree of flexibility in grounding a set of φ-relative
options for the given φ, then, is which policies are as-
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(b) Construction of π⇓
Oφ .

Figure 1: Grounding policy πOφ to π⇓Oφ .

sociated with each option, and how many options are
available in each abstract state. If, for instance, the
optimal policy π∗ were chosen for an option in the
top right room, but the uniform random policy were
available everywhere else, how might that impact the
overall suboptimality of the policies induced by the ab-
straction? Our main result (Theorem 1) clarifies the
precise conditions under which ε-optimal policies are
representable under different abstractions.

To analyze the value loss of these pairs, we first show
that any (φ,Oφ) gives rise to an abstract policy over
Sφ and Oφ that induces a unique policy in the origi-
nal MDP (over the entire state space). Critically, this
property does not hold for arbitrary options due to
their semi-Markovian nature.

Proofs of all introduced Theorems and Remarks are
presented in Appendix A.

Remark 1. Every deterministic policy defined over
abstract states and φ-relative options, πOφ : Sφ → Oφ,
induces a unique Markov policy in the ground MDP,
π⇓Oφ : S → ∆(A). We let ΠOφ denote the set of ab-

stract policies representable by the pair (φ,Oφ), and

Π⇓Oφ denote the corresponding set of policies in the
original MDP.

This remark gives us a means of translating a policy
over φ-relative options into a policy over the original
state and action space, S and A. Consequently, we
can define the value loss associated with a set of op-
tions paired with a state abstraction: every (φ,Oφ)

pair yields a set of policies in the original MDP, Π⇓Oφ .

We define the value loss of (φ,Oφ) as the value loss of
the best policy in this set.
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Definition 5 ((φ,Oφ)-Value Loss): The value loss of
(φ,Oφ) is the smallest degree of sub-optimality achiev-
able:

L(φ,Oφ) := min
πOφ∈ΠOφ

∣∣∣∣
∣∣∣∣V ∗ − V

π⇓Oφ

∣∣∣∣
∣∣∣∣
∞
. (2)

Note that this notion of value loss is not well de-
fined for options in general, since they induce a semi-
MDP: there is no well-formed ground value function
of a policy over options, but rather, a semi-Markov
value function. As a simple illustration, consider a
ground state sg, two options o1 and o2 (either of which
could be executing in sg), and a policy πφ,o over ab-
stract states and options. It could be that o1 or o2 is
currently executing when sg is entered or that either
option has just terminated, requiring πφ,o to select a
new option. Each of these three cases induces a dis-
tinct value V πφ,o(sg) which is then difficult to distill
into a single ground value function. This is a key rea-
son to restrict attention to φ-relative options, each of
which retains structure that couples with the corre-
sponding state abstraction φ to yield value functions
in the ground MDP.

3.1 Main Results

We next show how different classes of φ-relative op-
tions can represent near-optimal policies. We define
an option class by a predicate λ : Oφ 7→ {0, 1}, and
say that a set of φ-relative options Oφ belongs to the
class Oφ,λ if and only if λ(Oφ) = 1.

We begin by summarizing the four new φ-relative op-
tion classes, drawing inspiration from other forms of
abstraction (Dean and Givan, 1997; Li et al., 2006;
Jiang et al., 2015a; Abel et al., 2016; Ravindran and
Barto, 2004; Nachum et al., 2019). For each class, we
will refer to the optimal option in sφ, o∗sφ , as the φ-
relative option which initiates in sφ and executes π∗

until termination. These classes were chosen as they
closely parallel existing properties studied in the liter-
ature. The four classes are as follows:

1. Similar Q∗ Functions: In each sφ, there is at least
one option o that has similar Q∗ to o∗sφ .

2. Similar Models: In each sφ, there is at least one
option o that has a similar multi-time model (Pre-
cup and Sutton, 1998) to o∗sφ .

3. Similar k-Step Distributions: In each sφ, there
is at least one option o that has a similar k-step
termination state distribution to o∗sφ , based off the
hierarchical construction introduced by Nachum
et al. (2019). Loss bounds will only apply to goal-
based MDPs.

4. Approximate MDP Homomorphisms: We show
that any deterministic πOφ can encode an MDP
homomorphism. The MDP homomorphism op-
tion class is defined by a guarantee on the quality
of the resulting homomorphism.

Our main result establishes the bounded value loss of
pairs (φ,Oφ) where Oφ belongs to any of these four
classes, and the size of the bound depends on the de-
gree of approximation (εQ; εR, εT ; τ ; and εr, εp).

Theorem 1. (Main Result) For any φ, the four
introduced classes of φ-relative options satisfy:

L(φ,Oφ,Q∗ε ) ≤ εQ
1− γ , (3)

L(φ,Oφ,Mε
) ≤ εR + |S|εTRMax

(1− γ)2
, (4)

L(φ,Oφ,τ ) ≤ τγ|S|
(1− γ)2

, (5)

L(φ,Oφ,H) ≤ 2

1− γ

(
εr +

γRMax

1− γ
εp
2

)
, (6)

where RMax is an upper bound on the reward
function, the L(φ,Oφ,τ ) bound holds in goal-based
MDPs and the other three hold in any finite MDP.

Observe that when the approximation parameters are
zero, many of the bounds collapse to 0 as well. This
illustrates the trade-off made between the amount of
knowledge used to construct the abstractions and the
degree of optimality ensured. Further note that the
value loss of the state abstraction does not appear in
any of the above bounds—indeed, φ will implicitly af-
fect the value loss as a function of the diameter of each
abstract state.

We now present each class in full technical detail. As
stated, the first two classes guarantee ε closeness of
values and models respectively. More concretely:

Similar Q∗-Functions (Oφ,Q∗ε): The ε-similar Q∗

predicate defines an option class where:

λ(Oφ) ≡ (7)

∀sφ∈Sφ∃o∈Oφ : max
s∈sφ
|Q∗sφ(s, o∗sφ)−Q∗sφ(s, o)| ≤ εQ,

where

Q∗sφ(s, o) := R(s, πo(s)) + γ
∑

s′∈S
T (s′ | s, πo(s))

(
1(s′ ∈ sφ)Q∗sφ(s′, o) + 1(s′ 6∈ sφ)V ∗(s′)

)
. (8)

This Q-function describes the expected return of start-
ing in state s, executing a φ-relative option o until leav-
ing φ(s), then following the optimal policy thereafter.
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More generally, this class of φ,Oφ pairs captures all
cases where each abstract state has at least one option
that is useful. Note that the identity state abstraction
paired with the degenerate set of options that exactly
encodes the execution of each primitive action will nec-
essarily be an instance of this class.

Similar Models (Oφ,Mε
): The ε-similar T and R

predicate defines an option class where:

λ(Oφ) ≡ ∀sφ∈Sφ∃o∈Oφ : (9)∣∣∣
∣∣∣T s′s,o∗sφ − T

s′

s,o

∣∣∣
∣∣∣
∞
≤ εT and

∣∣∣
∣∣∣Rs,o∗sφ −Rs,o

∣∣∣
∣∣∣
∞
≤ εR,

where Rs,o and T s
′

s,o are shorthand for the reward
model and multi-time model of Sutton et al. (1999).
Roughly, this class states that there is at least one op-
tion in each abstract state that behaves similarly to the
optimal option in that abstract state, o∗sφ , throughout
its execution in the abstract state.

We next derive two classes of φ-relative options based
on abstraction formalisms from existing literature.
The first is based on the hierarchical construction in-
troduced by Nachum et al. (2019), while the second
shows that φ-relative options can describe an MDP
homomorphism (Ravindran and Barto, 2004).

Similar k-Step Distributions (Oφ,τ): Let P(s′, k |
s, o) denote the probability of option o terminating in
s′ after k steps, given that it initiated in s. We define
this class by the following predicate:

λ(Oφ) ≡ ∀sφ∈Sφ∃o∈Oφ∀k : (10)

max
s∈sφ,s′∈S

|P(s′, k | s, o∗sφ)− P(s′, k | s, o)| ≤ τ.

For the next class definition we first define the one-
step abstract transition and reward functions for a φ-
relative option o:

Tφ(s′φ | sφ, o) =
∑

s∈sφ
w(s)

∑

s′∈s′φ

T (s′ | s, πo(s)), (11)

Rφ(sφ, o) =
∑

s∈sφ
w(s)R(s, πo(s)), (12)

where w(s) is any valid weighting function with∑
s∈sφ w(s) = 1. Next, we define the quantities

of Ravindran and Barto (2004), related to the sim-
ulation lemma of Kearns and Singh (2002):

Kp = max
s∈S,a∈A
∑

sφ∈Sφ

∣∣∣
∑

s′∈sφ
T (s′ | s, a)− Tφ(sφ | φ(s), πOφ(φ(s)))

∣∣∣,

Kr = max
s∈S,a∈A

|R(s, a)−Rφ(φ(s), πOφ(φ(s)))|. (13)

These capture the maximum discrepancy between the
model of the ground MDP and the model of the in-
duced abstract MDP defined according to (φ,Oφ).
Then, we define the class as follows.

Approximate MDP Homomorphisms (Oφ,H):
This class requires that Oφ represents policies that in-
duce good approximate homomorphisms:

λ(Oφ) ≡ ∀ πOφ ∈ ΠOφ : Kp ≤ εp and Kr ≤ εr.

These four classes constitute four sufficient conditions
for (φ,Oφ) pairs to yield bounded value loss. It is use-
ful, however, to identify not just sufficient conditions,
but also necessary. To this end, we next establish one
necessary condition of all (globally) value preserving
(φ,Oφ) classes.

Theorem 2. For any (φ,Oφ) pair with L(φ,Oφ) ≤ η,
there exists at least one option per abstract state that
is η-optimal in Q-value. Precisely, if L(φ,Oφ) ≤ η,
then:

∀sφ∈Sφ∀s∈sφ∃o∈Oφ : Q∗sφ(s, o∗sφ)−Q∗sφ(s, o) ≤ η. (14)

This theorem tells us that for any agent acting us-
ing our joint abstraction framework, if there exists an
abstract state for which there is not an η-optimal op-
tion, then the agent cannot represent a globally near-
optimal policy.

3.2 Experiment

We next conduct a simple experiment to corroborate
the findings of our analysis, and to test whether value
preserving options enable simple RL algorithms to find
near-optimal policies. The experiment illustrates an
important property of one of the introduced φ,Oφ
classes, and is organized as follows. We first construct
a φ,Oφ pair belonging to the Oφ,Q∗ε class using dy-
namic programming. We give this pair to an instance
of Double Q-Learning (Hasselt, 2010) with a varied
sample budget N . The environment is a Four Rooms
grid world MDP, with a single goal location in the top
right and start location in the bottom left. The state
abstraction φ maps each state into one of four abstract
states, denoting each of the four rooms. We vary both
the number of options added per abstract state (|Oφ|)
and the sample budget of Double Q (N), and present
the value of the policy discovered by the final episode
for each setting of |Oφ| and N .

Results are presented in Figure 2a. First, note that
with only one option per abstract state, Double Q can
trivially find a near-optimal policy, even with a small
sample budget. This aligns with our theory: the in-
cluded options preserve value, and so any assignment
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(a) Learning With Value Preserving
Options

Value function visualization - May 21st - paper figures

Q Learning with Phi-Relative Options Q Learning

(b) Learned Value Functions for Q-Learning (left) and Q-
Learning with φ,Oφ (right)

Figure 2: Empirical evidence that the φ,Oφ pairs from Theorem 1 preserve value (left) and comparison of the
learned value function with Q-Learning run in the ground MDP and run in the abstract MDP of φ,Oφ (right).
On the left, the y-axis denotes the value of the policy learned by Double Q-Learning for the given sample budget
(N) and option set, averaged over 25 runs with 95% confidence interval. Optimal behavior is shown in red. On
the right, the stars indicate potential goal locations (those that were used for constructing the options), with the
red star the currently active one. Brighter color indicates a higher estimated value, with purple a value of 0.

of options to abstract states will yield a near-optimal
policy. In contrast, if randomly chosen options are
used instead (shown in blue, labeled as Orandom), the
learning algorithm fails to find a good policy even with
a high sample budget (N = 1e6 was used). Second, we
find that as the number of options increases, the added
branching factor causes Double Q to find a lower value
policy with the same number of samples. However,
by Theorem 1 we know each set of options preserves
value; as the sample budget increases we see that the
value of the discovered policy tends toward optimal.
In short, the φ,Oφ pairs defined by Theorem 1 do
in fact preserve value, but will also affect the sam-
ple budget required to find a good policy. We foresee
the combination of value preserving abstractions with
those that lower learning complexity (see recent work
by Brunskill and Li (2014); Fruit et al. (2017)) as a
key direction for future work.

We further visualize the learned value function of Q-
Learning with and without φ-relative options after the
same sample budget, depicted in Figure 2b. Notably,
since φ-relative options update entire blocks of states,
we see large regions of the state space with the same
learned value function. Conversely, Q-Learning only
tends to explore (and estimate the values of) a narrow
region of the state space. The visual highlights this
important qualitative difference between learning with
and without abstractions. More experiments, details,
and a link to the code are found in Appendix B.

4 HIERARCHICAL ABSTRACTION

We next present an extension of Theorem 1 that ap-
plies to hierarchies consisting of (φ,Oφ) pairs. We

show the value loss compounds linearly if we con-
struct a hierarchy using algorithms that generate a
well-behaved φ and Oφ. To do so, we require two def-
initions and additional notation (see Table 1 in Ap-
pendix A for a summary of hierarchy notation). We
first define a hierarchy as n sets of (φ,Oφ) pairs.

Definition 6 ((φ,Oφ)-Hierarchy): A depth n hierar-
chy, denoted Hn, is a list of n state abstractions, φ(n),

and a list of n sets of φ-relative options, O(n)
φ . The

components (I, β, π) of each of the i-th set of options,
Oφ,i are defined over the (i−1)-th abstract state space
Sφ,i−1 = {φi−1(φi−2(. . . φ1(s) . . .)) | s ∈ S}.
We next introduce additional notation to refer to val-
ues, states, options, and policies at each level of the
hierarchy. We denote πn : Sφ,n → Oφ,n as the level n
policy encoded by the hierarchy, with Πn the space of
all policies encoded in this way. We let si := φi(s) =
φi(. . . φ1(s) . . .), with s a state in the ground MDP.
We further denote Vi as the i-th level’s value function,
defined as follows for some ground state s:

V πi (s) := V πi
(
φi(s)

)
= V πi (si) =

max
o∈Oi

(
Ri (si, o) +

∑

s′∈Si
Ti (s′ | si, o)V πi (s′)

)
, (15)

where:

Ri(si, o) :=
∑

si−1∈si
wi(si−1)Rsi−1,o (16)

Ti(s
′
i | si, o) :=

∑

si−1∈si

∑

s′i−1∈Si−1

wi(si−1)T
s′i−1
si−1,o (17)

where again Rs,o and T s
′

s,o are defined according to the
multi-time model (Sutton et al., 1999), si ∈ Sφ,i is a
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level i state resulting from φi(s), and wi is an aggre-
gation weighting function for level i. Note that V0 is
the ground value function, which we refer to as V for
simplicity.

4.1 Hierarchy Analysis

We now extend Theorem 1 to hierarchies of arbitrary
depth, building on two key observations. First, any
policy πn represented at the top level of a hierarchy
Hn also has a unique Markov policy in the ground
MDP, which we denote π⇓n (in contrast to π↓n, which
moves the level n policy to level n−1). We summarize
this fact in the following remark:

Remark 2. Every deterministic policy πi defined by
the i-th level of a hierarchy, Hn, induces a unique pol-
icy in the ground MDP, which we denote π⇓i .

To be precise, note that π↓i specifies the level i policy

πi mapped into level πi−1, whereas π⇓i refers to the
policy at πi mapped into π0. The second key insight is
that we can extend our same notion of value loss from
(φ,Oφ) pairs to hierarchies, Hn.

Definition 7 (Hn-Value Loss): The value loss of a
depth n hierarchy Hn is the smallest degree of subopti-
mality across all policies representable at the top level
of the hierarchy:

L(Hn) := min
πn∈Πn

∣∣∣
∣∣∣V ∗ − V π⇓n

∣∣∣
∣∣∣
∞
. (18)

This quantity denotes how suboptimal the best hi-
erarchical policy is in the ground MDP. Therefore, the
guarantee we present expresses a condition on global
optimality rather than recursive or hierarchical opti-
mality (Dietterich, 2000a).

We next show that there exist value-preserving hier-
archies by bounding the above quantity for well con-
structed hierarchies. To prove this result, we require
two assumptions.

Assumption 1. The value function is consistent
throughout the hierarchy. That is, for every level of
the hierarchy i ∈ [1 : n], for any policy πi over states
Sφ,i and options Oφ,i, there is a small κ ∈ R≥0 such
that:

max
s∈S

∣∣∣∣V
π↓i
i−1

(
φi−1(s)

)
− V πii

(
φi(s)

)∣∣∣∣ ≤ κ (19)

Assumption 2. Subsequent levels of the hierarchy can
represent policies similar in value to the best policy at
the previous level. That is, for every i ∈ [1 : n − 1],

letting π�i = arg minπi∈Πi ||V ∗0 − V
π⇓i
0 ||∞, there is a

small ` ∈ R≥0 such that:

min
π↓i+1∈Π↓i+1

∣∣∣∣
∣∣∣∣V

π�i
i − V π

↓
i+1

i

∣∣∣∣
∣∣∣∣
∞
≤ `. (20)

We strongly suspect that both assumptions are true
given the right choice of state abstractions, options,
and methods of constructing abstract MDPs. These
two assumptions (along with Theorem 1) give rise to
hierarchies that can represent near-optimal behavior.
We present this fact through the following theorem:

Theorem 3. Consider two algorithms: 1) Aφ: given
an MDP M , outputs a φ, and 2) AOφ : given M and
a φ, outputs a set of options O such that there are
constants κ and ` for which Assumption 1 and As-
sumption 2 are satisfied.

Then, by repeated application of Aφ and AOφ , we can
construct a hierarchy of depth n such that

L(Hn) ≤ n(κ+ `). (21)

This theorem offers a clear path for extending the
guarantees of φ-relative options beyond the typical
two-timescale setup observed in recent work (Bacon
et al., 2017; Nachum et al., 2019) to fully realize the
benefits of (multi-level) hierarchical abstraction (Levy
et al., 2019). Moreover, both Assumption 1 and As-
sumption 2 are sufficient—together with φ-relative op-
tions that satisfy Theorem 1—to construct a hierarchy
with low value loss. We conclude that algorithms for
leveraging hierarchies may want to explicitly search
for structures that satisfy our assumptions: 1) value
function smoothness up and down the hierarchy, and
2) policy richness at each level of the hierarchy.

5 DISCUSSION

We proved which state-action abstractions are guaran-
teed to preserve representation of high value policies.
To do so, we introduced φ-relative options, a simple
but expressive formalism for combining state abstrac-
tions with options. Under this formalism, we proposed
four classes of φ-relative options with bounded value
loss. Lastly, we proved that under mild conditions,
pairs of state-action abstractions can be recursively
combined to induce hierarchies that also possess near-
optimality guarantees.

We take these results to serve as a concrete path to-
ward principled abstraction discovery and use in RL.
To realize this goal, abstractions need to both preserve
good behavior, and lower sample complexity. Our
results thus far focus on the representation of near-
optimal policies, which is a key condition for ensuring
agents can eventually behave well. However, learning
agents also need to represent functions of intermediate
quality as they learn. Thus, an important direction for
future work is to clarify which kinds of abstractions
ensure that near-optimal policies are easily learnable.
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We here present proofs of each introduced theoretical result (Appendix A) along with additional experiments and
implementation details (Appendix B). All of our code is publicly available for extension and reproduction.1

A Proofs

In this section we provide proofs of each introduced result.

Remark 1. Every deterministic policy defined over abstract states and φ-relative options, πOφ : Sφ → Oφ, induces

a unique Markov policy in the ground MDP, π⇓Oφ : S → ∆(A). We denote by ΠOφ the set of abstract policies

representable by the pair (φ,Oφ), and let Π⇓Oφ be the corresponding set of policies in the original MDP.

Proof. Consider an arbitrary deterministic policy πOφ . By definition, this policy assigns one option to each abstract
state. Let Oπ denote the set of options this policy assigns.

By construction of φ-relative options, for every ground state s ∈ S there is one unique option oφ(s) ∈ Oπ that can
be executed in s.

Therefore, we construct a policy π⇓Oφ as the combination of option policies in Oπ. Specifically, letting πoφ(s) denote

the option policy of the option in Oπ that is assigned to φ(s):

π⇓Oφ(s) = πoφ(s)(s) (22)

Theorem 1. (Main Result) For any φ, the four introduced classes of φ-relative options satisfy:

L(φ,Oφ,Q∗ε ) ≤ εQ
1− γ

, L(φ,Oφ,Mε
) ≤ εR + |S|εTRMax

(1− γ)2
, (23)

L(φ,Oφ,τ ) ≤ τγ|S|
(1− γ)2

, L(φ,Oφ,H) ≤ 2

1− γ

(
εr +

γRMax

1− γ
εp
2

)
, (24)

where the L(φ,Oφ,τ ) bound holds in goal-based MDPs and the other three hold in any MDP.

We prove this claim using four separate proofs, each targeting one class.

1https://github.com/david-abel/vpsa_aistats2020
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Proof. (L(φ,Oφ,Q∗ε ) ≤ εQ
1−γ )

Consider L(φ,Oφ,Q∗ε ) = minπ⇓Oφ∈Π⇓Oφ
maxs∈S |V ∗(s)− V

π⇓Oφ (s)|. Since V ∗(s) ≥ V π(s) for all π, we henceforth drop

the absolute value for convenience.

To proceed, we recall that o∗sφ is the φ-relative option that executes π∗ in every state and terminates when it leaves
the abstract state sφ:

o∗sφ := ∀s∈S :〈I(s) ≡ φ(s) = sφ, (25)

β(s) ≡ φ(s) 6= sφ, (26)

π(s) = π∗(s)〉. (27)

Note that since o∗sφ always chooses actions according to π∗, that Q∗sφ(s, o∗sφ) = V ∗(s) (where Q∗sφ is defined according

to Equation 8).

Then, by the Q∗ε predicate, we can construct a policy over abstract states and options µOφ ∈ ΠOφ with the following
property:

∀sφ∈Sφ,s∈sφ : Q∗sφ(s, o∗sφ)−Q∗sφ(s, µOφ(sφ)) ≤ εQ. (28)

Note that µOφ(sφ) outputs an option. As in Equation 28, we henceforth denote sφ = φ(s) and correspondingly
s′φ = φ(s′).

Then it must be the case that

L(φ,Oφ,Q∗ε ) ≤ max
s∈S

V ∗(s)− V µ
⇓
Oφ (s). (29)

Let Q∗t (s, o) denote the expected discounted reward of executing option o, then executing t options under µOφ , then
following the optimal policy thereafter. Note that

lim
t→∞

Q∗t (s, µOφ(sφ)) = V
µ⇓Oφ (s), (30)

because Q∗t (s, µOφ(sφ)) is the expected discounted reward of executing t + 1 options under µOφ , then following the
optimal policy thereafter.

We next show by induction on t that

max
s∈S

V ∗(s)− V µ
⇓
Oφ (s) = max

s∈S
lim
t→∞

V ∗(s)−Q∗t (s, µOφ(sφ)) ≤ εQ
1− γ

. (31)

In particular, we wish to show that

∀t∈N : max
s∈S

V ∗(s)−Q∗t (s, µOφ(sφ)) ≤
t∑
i=0

εQγ
i. (32)

(Base Case)
When t = 0, for all s ∈ S,

Q∗0(s, µOφ(sφ)) = Q∗sφ(s, µOφ(sφ)), (33)

because both quantities represent the expected discounted reward of executing the option µOφ(sφ) then following
the optimal policy thereafter. It follows that

max
s∈S

V ∗(s)−Q∗0(s, µOφ(sφ)) = max
s∈S

V ∗(s)−Q∗sφ(s, µOφ(sφ)), (34)

= max
s∈S

Q∗sφ(s, o∗sφ)−Q∗sφ(s, µOφ(sφ)), (35)

≤ εQ, (36)

=

0∑
i=0

εQγ
0, (37)
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where the inequality holds by definition of µOφ .

(Inductive Case)
We assume as the inductive hypothesis that

max
s∈S

V ∗(s)−Q∗k(s, µOφ(sφ)) ≤
k∑
i=0

εQγ
i, (38)

and want to show that

max
s∈S

V ∗(s)−Q∗k+1(s, µOφ(sφ)) ≤
k+1∑
i=0

εQγ
i. (39)

To begin, fix s ∈ S and consider

V ∗(s)−Q∗k+1(s, µOφ(sφ)) (40)

= V ∗(s)−

(
Ro(s, µOφ(sφ)) +

∑
s′∈S

To(s
′|s, µOφ(sφ))Q∗k(s′, µOφ(s′φ))

)
(41)

= V ∗(s)−Ro(s, µOφ(sφ))−
∑
s′∈S

To(s
′|s, µOφ(sφ))Q∗k(s′, µOφ(s′φ)) (42)

where Ro and To indicate the reward and multi-time option models from Sutton et al. (1999).

Now, subtract and add
∑
s′∈S To(s

′|s, µOφ(sφ))V ∗(s′):

= V ∗(s)−Ro(s, µOφ(sφ))−
∑
s′∈S

To(s
′ | s, µOφ(sφ))V ∗(s′) (43)

+
∑
s′∈S

To(s
′ | s, µOφ(sφ))V ∗(s′)−

∑
s′∈S

To(s
′ | s, µOφ(sφ))Q∗k(s′, µOφ(s′φ))

= V ∗(s)−Q∗sφ(s, µOφ(sφ)) +
∑
s′∈S

To(s
′ | s, µOφ(sφ))

[
V ∗(s′)−Q∗k(s′, µOφ(s′φ)

]
(44)

= Q∗sφ(s, o∗sφ)−Q∗sφ(s, µOφ(sφ)) +
∑
s′∈S

To(s
′ | s, µOφ(sφ))

[
V ∗(s′)−Q∗k(s′, µOφ(s′φ)

]
(45)

≤ εQ +
∑
s′∈S

To(s
′ | s, µOφ(sφ))

[
V ∗(s′)−Q∗k(s′, µOφ(s′φ)

]
, (46)

by definition of µOφ . Continuing, we have that:

= εQ +
∑
s′∈S

∞∑
n=1

P(s′, n|s, µOφ(sφ))γn
[
V ∗(s′)−Q∗k(s′, µOφ(s′φ)

]
(47)

≤ εQ +
∑
s′∈S

∞∑
n=1

P(s′, n|s, µOφ(sφ))γn
k∑
i=0

εQγ
i, (48)

by the inductive hypothesis. Then:

= εQ + γ
∑
s′∈S

∞∑
n=0

P(s′, n+ 1|s, µOφ(sφ))γn
k∑
i=0

εQγ
i (49)

= εQ + γ

k∑
i=0

εQγ
i
∑
s′∈S

∞∑
n=0

P(s′, n+ 1|s, µOφ(sφ))γn (50)

≤ εQ + γ

k∑
i=0

εQγ
i · 1 (51)

=

k+1∑
i=0

εQγ
i, (52)
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since P(s′, n+ 1|s, µOφ(sφ)) is a probability distribution and γ is less than 1.

All together, we’ve shown that V ∗(s)−Q∗k+1(s, µOφ(sφ)) ≤
∑k+1
i=0 εQγ

i for all s ∈ S, which implies that

max
s∈S

V ∗(s)−Q∗k+1(s, µOφ(sφ)) ≤
k+1∑
i=0

εQγ
i, (53)

as desired.

It follows by induction that

∀t∈N : max
s∈S

V ∗(s)−Q∗t (s, µOφ(sφ)) ≤
t∑
i=0

εQγ
i. (54)

Therefore,

L(φ,Oφ,Q∗ε ) ≤ max
s∈S

V ∗(s)− V µ
⇓
Oφ (s) (55)

= max
s∈S

lim
t→∞

V ∗(s)−Q∗t (s, µOφ(sφ)) (56)

≤ lim
t→∞

t∑
i=0

εQγ
i (57)

=
εQ

1− γ
, (58)

which completes the proof.

Proof. (L(φ,Oφ,Mε
) ≤ εR+|S|εTVMax

1−γ )

We show that this class is a subclass of the Oφ,Q∗ε class. Therefore, it stands to show that, given our class definition,
there exists an option in every abstract state that is near-optimal in Q-value.

Fix s ∈ S. Let sφ = φ(s). By the Mε predicate, there exists an option o ∈ Oφ such that

||T s
′

s,o∗sφ
− T s

′

s,o||∞ ≤ εT and ||Rs,o∗sφ −Rs,o||∞ ≤ εR. (59)

Now, we consider the difference in optimal Q-values between o∗sφ and o. We first have that:

Q∗sφ(s, o) = R(s, πo(s)) + γ
∑
s′∈S

T (s′ | s, πo(s))
(
1(s′ ∈ sφ)Q∗sφ(s′, o) + 1(s′ 6∈ sφ)V ∗(s′)

)
= Ro(s, o) +

∑
s′∈S

To(s
′|s, o)V ∗(s′),

(60)

with Ro and To denoting the reward model and multi-time model of Sutton et al. (1999).
By symmetry,

Q∗sφ(s, o∗sφ) = Ro(s, o
∗
sφ

) +
∑
s′∈S

To(s
′|s, o∗sφ)V ∗(s′). (61)
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Therefore,

|Q∗sφ(s, o∗sφ)−Q∗sφ(s, o)| = |Ro(s, o∗sφ)−Ro(s, o) +
∑
s′∈S

To(s
′|s, o∗sφ)V ∗(s′) −∑

s′∈S
To(s

′|s, o)V ∗(s′)|

≤ |Ro(s, o∗sφ)−Ro(s, o)|+ |
∑
s′∈S

(
To(s

′|s, o∗sφ)− To(s′|s, o)
)
V ∗(s′)|

≤ |Ro(s, o∗sφ)−Ro(s, o)|+
∑
s′∈S
|To(s′|s, o∗sφ)− To(s′|s, o)||V ∗(s′)|

≤ εR + |S|εTVMax,

(62)

by the model similarity assumption. We have now shown that any option with near-optimal models has a near-optimal
Q-value with εQ = εR + |S|εTVMax. Therefore, by the previous result,

L(φ,Oφ,Mε) ≤
εR + |S|εTVMax

1− γ
. (63)

Proof. (L(φ,Oφ,τ ) ≤ τγ|S|
(1−γ)2 )

We first state rigorously our definition of a goal-based MDP.

Definition 8 (Goal-based MDP): A goal-based MDP is an MDP with some number of goal states, denoted SG ⊆ S.
The reward function is such that R(s, a) = 1 if s ∈ SG, R(s, a) = 0 otherwise, and the episode terminates after
receiving a reward in a goal state. Furthermore, we assume that each goal state exists in its own abstract state:
s 6= sG ⇒ φ(sG) 6= φ(s), where sG ∈ SG, s ∈ S.

We show that this class is a subclass of the Oφ,Q∗ε class in goal-based MDPs. In particular, it stands to show that
given our class definition, there exists an option in every abstract state that is near-optimal in Q-value.

First, note that in the abstract states containing a goal state, any option is optimal since R(s, a) = 1 regardless of
action. Therefore, we restrict our attention to an arbitrary s ∈ S \SG, fixing sφ = φ(s). Let o be an option available
in sφ such that maxs∈sφ,s′∈S |P(s′, k | s, o∗sφ)− P(s′, k | s, o)| ≤ τ , by the option class definition. Then

Q∗sφ(s, o∗sφ)−Q∗sφ(s, o) (64)

= Ro(s, o
∗
sφ

) +
∑
s′∈S

To(s
′|s, o∗sφ)V ∗(s′)−Ro(s, o)−

∑
s′∈S

To(s
′|s, o)V ∗(s′) (65)

=
∑
s′∈S

[
To(s

′|s, o∗sφ)− To(s′|s, o)
]
V ∗(s′), (66)

where we drop the Ro terms since s 6∈ SG, each goal state has its own abstract state, and R(s, a) = 0 for s 6∈ SG.
Continuing, we have that

Q∗sφ(s, o∗sφ)−Q∗sφ(s, o) =
∑
s′∈S

[ ∞∑
k=1

|P(s′, k | s, o∗sφ)− P(s′, k | s, o)|γk
]
V ∗(s), (67)

writing out the multi-time model. This implies that

Q∗sφ(s, o∗sφ)−Q∗sφ(s, o) ≤
∑
s′∈S

τγ

1− γ
V ∗(s). (68)
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Now, note that V ∗(s′) =
∑
sG∈SG

∑∞
t=0 p(sG, t | s′, π∗)γt in a goal-based MDP, where p(sG, t | s′, π∗) is the prob-

ability of being in state sG after t timesteps, starting from s′ and following π∗. Indeed, this gives that V ∗(s′) ≤ 1
since p(sG, t | s′, π∗) is a probability distribution and γ is less than one. Therefore,

Q∗sφ(s, o∗sφ)−Q∗sφ(s, o) ≤ τγ|S|
1− γ

. (69)

We have shown that there exists an option, o, in any abstract state that is near-optimal in Q-value, with εQ = τγ|S|
1−γ .

Therefore, by the Oφ,Q∗ε bound,

L(φ,Oφ,τ ) ≤ τγ|S|
(1− γ)2

, (70)

as desired.

Proof.
(
L(φ,Oφ,H) ≤ 2

1−γ

(
εr + γRMax

1−γ
εp
2

))
We prove this result by illustrating the connection between our formalisms and the work of Ravindran and Barto
(2004). To do so, we first restate their definition of an approximate homomorphism.

Definition 9 (Approximate Homomorphism (Ravindran and Barto (2004))): An approximate MDP homomorphism
h from an MDP M = 〈S,A,Ψ, P,R〉 to an MDP M′ = 〈S′, A′,Ψ′, P ′, R′〉 is a surjection from Ψ to Ψ′, defined by a
tuple of surjections 〈f, {gs|s ∈ S}〉 , with h((s, a)) = (f(s), gs(a)) , where f : S → S′ and gs : As → A′f(s) for s ∈ S,
such that for all s, s′ in S and a ∈ As :

P ′ (f(s), gs(a), f (s′)) =
∑

(q,b)∈[(s,a)]h

wqb
∑

s′′∈[s′]f

P (q, b, s′′) (71)

R′ (f(s), gs(a)) =
∑

(q,b)∈[(s,a)]h

wqb R(q, b), (72)

where [(s, a)]h denotes the preimage of h((s, a)), [s′]f denotes the preimage of f(s′), and∑
(q,b)∈[(s,a)]h

wqb = 1. Furthermore, Ψ and Ψ′ denote the sets of admissible state-action pairs in the ground and

abstract MDP respectively. Based on Ψ and Ψ′, As denotes the set of actions available in state s of the ground MDP,
and A′f(s) denotes the set of abstract actions available in state f(s) of the abstract MDP.

We now illustrate how our definitions of φ,Rφ, Tφ with respect to a given πOφ induce an approximate homomorphism.
First, note that our φ precisely corresponds to their definition of f , a state abstraction. Then, fix sφ ∈ Sφ, and let
A′sφ = {πOφ(sφ)} with gs(a) = πOφ(sφ)∀s∈sφ ∀a∈A.

We now consider our definitions of Tφ and Rφ:

Tφ(s′φ | sφ, o) =
∑
s∈sφ

w(s)
∑
s′∈s′φ

T (s′|s, πo(s)) Rφ(sφ, o) =
∑
s∈sφ

w(s)R(s, πo(s)), (73)

We note that these are precisely an instance of P ′ and R′ as defined above, with wqb = 0 whenever b 6= πo(q) . We
write w(s) to denote this choice of weighting function, which depends only on the action prescribed by πo. We select
this choice of weighting function (as opposed to a weighting dependent on all available actions) in order to faithfully
represent the 1-step behavior of executing an option in the abstract MDP.

By these connections, a deterministic policy πOφ over φ-relative options coupled with our choice of weighting function
defines an approximate homomorphism. We further adapt their definitions of Kp and Kr to our notational setting,
which describe the maximum discrepancy in models between the ground and abstract MDPs.
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Kp = max
s∈S,a∈A

∑
sφ∈Sφ

∣∣∣ ∑
s′∈sφ

T (s′|s, a)− Tφ(sφ|φ(s), πOφ(φ(s)))
∣∣∣, (74)

Kr = max
s∈S,a∈A

|R(s, a)−Rφ(φ(s), πOφ(φ(s)))|. (75)

The main theorem of Ravindran and Barto (2004) guarantees that the value loss of the optimal policy in the abstract
MDP M′ is upper-bounded by

2

1− γ

(
Kr +

γ

1− γ
δr′
Kp

2

)
,

where δr′ is upper-bounded by RMax. Let µOφ ∈ ΠOφ denote the optimal policy in the abstract MDP. By our option
class definition, all abstract policies πOφ ∈ ΠOφ induce homomorphisms with bounded Kp,Kr, so, in particular, µOφ
has bounded Kp,Kr. Then:

L(φ,Oφ,H) = min
πOφ∈ΠOφ

∣∣∣∣∣∣∣∣V ∗ − V π⇓Oφ ∣∣∣∣∣∣∣∣
∞

(76)

≤
∣∣∣∣∣∣∣∣V ∗ − V µ⇓Oφ ∣∣∣∣∣∣∣∣

∞
(77)

≤ 2

1− γ

(
Kr +

γ

1− γ
δr′
Kp

2

)
(78)

≤ 2

1− γ

(
εr +

γRMax

1− γ
εp
2

)
, (79)

as desired.

Theorem 2. For any (φ,Oφ) pair with L(φ,Oφ) ≤ η, there must exist at least one option per abstract state that is
η-optimal in Q-value. Precisely, if L(φ,Oφ) ≤ η, then:

∀sφ∈Sφ∀s∈sφ∃o∈Oφ : Q∗sφ(s, o∗)−Q∗sφ(s, o) ≤ η. (80)

Proof. Let µOφ = arg minπOφ∈ΠOφ

∣∣∣∣∣∣∣∣V ∗ − V π⇓Oφ ∣∣∣∣∣∣∣∣
∞
.

Suppose, for contradiction, that there exists an abstract state sφ for which there is no η-optimal option in Oφ. Then
it must be the case that

Q∗sφ(s, o∗)−Q∗sφ(s, µOφ(s)) > η (81)

for some s ∈ sφ.

By, Q∗sφ(s, o∗) = V ∗(s), this implies that

V ∗(s)−Q∗sφ(s, µOφ(s)) > η. (82)

Then, note that Q∗sφ(s, µOφ(s)) ≥ V
µ⇓Oφ (s) because Q∗sφ describes the expected return of executing option µOφ(s),

then switching to optimal behavior, whereas V
µ⇓Oφ describes the expected return of executing µOφ(s) then continuing

to execute options according to µOφ .

Noticing that V ∗(s) ≥ Q∗sφ(s, µOφ(s)) ≥ V µ
⇓
Oφ (s), we have that

V ∗(s)− V µ
⇓
Oφ (s) > η. (83)
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This implies that

L(φ,Oφ) = min
πOφ∈ΠOφ

∣∣∣∣∣∣∣∣V ∗ − V π⇓Oφ ∣∣∣∣∣∣∣∣
∞

(84)

= V ∗(s)− V µ
⇓
Oφ (s) (85)

> η, (86)

which contradicts the premise. Therefore, it must be true that

∀sφ∈Sφ∀s∈sφ∃o∈Oφ : Q∗sφ(s, o∗)−Q∗sφ(s, o) ≤ η. (87)

φ A state abstraction function.

Oφ A set of φ-relative options.

L(φ,Oφ) The value loss of the φ,Oφ pair.

πOφ A policy that maps each abstract state to an option.

π⇓Oφ A policy over S and A, induced by πOφ .

Hn A hierarchy of depth n, denoting the pair of lists (φ(n),O(n)
φ ).

φ(n) A list of n state abstractions, where φi : Sφ,i−1 → Sφ,i.
φi The i-th state abstraction in a list φ(n).

φi The result of applying the first i state abstractions to s, φi(. . . φ1(s) . . .).

Sφ,i The i-th abstract state space.

si A state belonging to Sφ,i
V πi Value of level i under policy π, defined according to Ri and Ti.

Oφ,i Options at level i, with each component defined over states in Sφ,i−1.

Ri The reward function of level i.

Ti The reward function of level i.

πi The policy over level i of the hierarchy such that πi : Si → Oφ,i.
π↓i A policy over Sφ,i−1 and Oφ,i−1, induced by πi.

π⇓i A policy over S and A, induced by πi.

Table 1: Abstraction notation.

A.1 Hierarchical Analysis

Our aim is to generalize Theorem 1 arbitrary hierarchies, Hn. To do so, we make two key observations. First, any
policy πn represented at the top level of a hierarchy Hn also has a unique Markov policy in the ground MDP, which
we denote π⇓n (in contrast to π↓n, which moves the level n policy to level n − 1). We summarize this fact in the
following lemma:

Remark 2. Every deterministic policy πi defined according to the i-th level of a hierarchy, Hn, induces a unique
policy in the ground MDP, which we denote π⇓i .

To be precise, note that π↓i specifies the level i policy πi mapped into level πi−1, whereas π⇓i refers to the policy at
πi mapped into π0. For further details regarding notion, see Table 1.
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The second key insight is that the same notion of value loss from φ,Oφ pairs can be extended to hierarchies, Hn.

Definition 10 (Hn-Value Loss): The value loss of a depth n hierarchy Hn is the smallest degree of suboptimality
across all policies representable at the top level of the hierarchy:

L(Hn) := min
πn∈Πn

∣∣∣∣∣∣V ∗ − V π⇓n ∣∣∣∣∣∣
∞
. (88)

Note that the above value functions are the value function in the original MDP; this bound evaluates how suboptimal
the best hierarchical policy is in the ground MDP. We next show that there exist value-preserving hierarchies by
bounding the above quantity for well constructed hierarchies. To prove this result, we require two assumptions.

Assumption 1. The value function is consistent throughout the hierarchy. That is, for every level of the hierarchy
i ∈ [1 : n], for any policy πi over states Sφ,i and options Oφ,i, there is a small κ ∈ R≥0 such that:

max
s∈S

∣∣∣∣V π↓ii−1

(
φi−1(s)

)
− V πii

(
φi(s)

)∣∣∣∣ ≤ κ (89)

Assumption 2. Subsequent levels of the hierarchy can represent policies similar in value to the best policy at the

previous level. That is, for every i ∈ [1 : n − 1], letting π�i = arg minπi∈Πi ||V
∗
0 − V

π⇓i
0 ||∞, there is a small ` ∈ R≥0

such that:

min
π↓i+1∈Π↓i+1

∣∣∣∣∣∣∣∣V π�ii − V π
↓
i+1

i

∣∣∣∣∣∣∣∣
∞
≤ `. (90)

We strongly suspect that both assumptions are true given the right choice of state abstractions, options, and methods
of constructing abstract MDPs. As some motivating evidence, a claim closely related to Assumption 1 is proven
by Abel et al. (2016) as Claim 1, and Assumption 2 is of similar structure to our own Theorem 1. Regardless,
these two assumptions (along with Theorem 1) give rise to hierarchies that can represent near-optimal behavior. We
present this fact through the following theorem:

Theorem 3. Consider two algorithms: 1) Aφ: given an MDP M , outputs a φ, and 2) AOφ : given M and a φ,
outputs a set of options O such that there are constants κ and ` for which Assumption 1 and Assumption 2 are
satisfied. Then, by repeated application of Aφ and AOφ , we can construct a hierarchy of depth n such that

L(Hn) ≤ n(κ+ `). (91)

Proof. We present the proof of the bound for a two level hierarchy, but the same strategy generalizes to n levels via
induction.

Let ` be the known upper bound for L(φ,O). Then:

By Theorem 1: min
π1∈Π1

||V ∗0 − V
π↓1
0 ||∞ ≤ `

By Assumption 1: ∀π1∈Π1
: ||V π

↓
1

0 − V π1
1 ||∞ ≤ κ

Letting π�1 = arg min
π1∈Π1

||V ∗0 − V
π↓1
0 ||∞,by Assumption 2: min

π↓2∈Π↓2

||V π
�
1

1 − V π
↓
2

1 ||∞ ≤ `

By Assumption 1 ∀π↓2∈Π↓2
: ||V π

↓
2

1 − V π
⇓
2

0 ||∞ ≤ κ

Therefore, by the triangle inequality:

min
π2∈Π2

||V ∗0 − V
π⇓2
0 ||∞ ≤ 2κ+ 2`. (92)

In short: the right hierarchies, constructed out of φ,Oφ pairs, can also preserve value.



Value Preserving State-Action Abstractions (Appendix)

B Experimental Details

We next provide further detail about the experiment described in Section 3.2.

The environment used is the Four Rooms grid world domain from Sutton et al. (1999). We place the start state
in the bottom left corner and the goal state in the top right corner, with no slip probability. We experiment with
Double Q-Learning (Hasselt, 2010), given access to different φ,Oφ pairs from the Oφ,Q∗ε . We define the size of the
option set as follows: the first option included for each abstract state is guaranteed to have at worst an ε-sub-optimal
policy within the cluster, as defined in the proof of the bounded value loss for the class. To construct this policy,
we explicitly create an ε suboptimal version of π∗ via Lemma 2 of Arumugam et al. (2018). When |O| > 1, we
add options that execute the uniform random policy within the cluster, until it exits (and hence, terminates the
option). Thus, the learning problem requires that the agent discovers options of each abstract state which belong to
the near-optimal policy and learns to ignore others. We set the exploration parameter ε for Double Q to be 0.1, the
learning rate α to be .05, and γ = 0.95, with no tuning.

We ran further variations of the experiment with other canonical RL algorithms, including Q-Learning (Watkins
and Dayan, 1992), R-Max (Brafman and Tennenholtz, 2002), SARSA (Rummery and Niranjan, 1994), and Delayed
Q-Learning (Strehl et al., 2006). Results are presented in Figure 3. Again, we find the same trend uncovered in the
experiment with Double Q-Learning:

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
|Oϕ|

0.0

0.2

0.4

0.6

0.8

V
̂ π ϕ
,O
(s

0)

Oϕ

Orandom

Oϕ,Q *
ε
,N=1e2

Oϕ,Q *
ε
,N=1e4

Oϕ,Q *
ε
,N=1e6

(a) Q-Learning

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
|Oϕ|

0.0

0.2

0.4

0.6

0.8

V
̂ π ϕ
,O
(s

0)

Oϕ

Orandom

Oϕ,Q *
ε
,N=1e2

Oϕ,Q *
ε
,N=1e4

Oϕ,Q *
ε
,N=1e6

(b) SARSA

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
|Oϕ|

0.0

0.2

0.4

0.6

0.8

V
̂ π ϕ
,O
(s

0)

Oϕ

Orandom

Oϕ,Q *
ε
,N=1e2

Oϕ,Q *
ε
,N=1e4

Oϕ,Q *
ε
,N=1e6
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Figure 3: Learning with value preserving φ,Oφ pairs for different algorithms.
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B.1 Experiment: Learning with φ,Oφ

We next conduct learning experiments of two kinds: 1) single-task, and 2) multi-task, in both cases contrasting the
sample efficiency of learning algorithms with and without value-preserving abstractions. We first construct pairs
(φ,Oφ) prescribed by the φ,OQ∗ε class with ε = 0.05. We conduct experiments in the classic Four Rooms MDP (Sut-
ton et al., 1999) and in a random graph MDP. We test with two different algorithms: 1) Q-Learning (Watkins and
Dayan, 1992), and 2) Delayed Q-Learning (Strehl et al., 2006). We ran each of the algorithms with and without
pairs (φ,Oφ) from the option classes analyzed in Theorem 1.

We compare performance to learning algorithms on their own and given eigenoptions, which are chosen due to their
capacity for effective exploration. As in the previous experiment, we test with two variants of eigenoptions: 1)
-eigen all, in which the primitive actions are removed and the options initiate in all states, and 2) -eigen prims, in
which the options are added to the primitive actions.

Single Task In the single-task experiments, we let each algorithm-abstraction pair interact with the Four Rooms
MDP for 500 episodes with each episode consisting of 75 steps, and the Random MDP for 500 episodes with 25 steps
per episode. We present the average cumulative reward achieved per episode across 10 runs with 95% confidence
intervals.

Results for the Four Rooms experiments are presented in Figure 4b and Figure 4c. Unsurprisingly, we find that both
learning algorithms are more sample efficient with value-preserving pairs (φ,Oφ), requiring a few episodes to learn
a near-optimal policy (see Q-learning-φ,O and Delayed-Q-φ,O, both in green). In contrast, the baseline learning
algorithms are unable to learn a reasonable policy even after around 400 episodes. The eigenoption variant shown
in red further exposes the difficulty of value preservation: since the algorithm can only reason with the options, it is
never able to find a good policy. Notably, the orange approach that includes primitive actions is able to also unable
to learn, since it has to search through the fully policy space representable by the primitive actions. Results for the
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(e) Multitask: Unseen Friendly Goals
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(f) Multitask: Unseen Adversarial Goals

Figure 4: Results for single-task learning experiments in Four Rooms and the Random MDP (top) and multi-task
learning experiments in Four Rooms (bottom).
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Random MDP experiment are presented in Figure 4a; again, we find the value preserving abstractions are capable
of supporting efficient learning of a high value policy. Here, eigenoptions paired with primitives achieves roughly
the same learning speed as the baseline algorithm, while the variant without primitives can never learn a high-value
policy.

Multitask In the multitask setting, we fixed a uniform random probability distribution over goal states. Then,
we defined a state abstraction that picks out each goal state as its own abstract state, and otherwise groups each of
the four rooms into four different abstract states, which we give to Q-Learning-(φ,O). At time step zero we sample
a goal from the goal distribution and let each algorithm interact with the sampled MDP for 200 episodes, with each
episode consisting of 50 steps. At the end of the 200 episodes, we reset each agent to tabula rasa, sample a new
goal, and repeat. We present the mean cumulative reward achieved averaged over 50 samples from the distribution,
with 95% confidence intervals. These results indicate how much the prior knowledge encoded by the abstractions
improves sample efficiency over the entire distribution of goals. We again compare to the two variants of eigenoptions
discussed in the single task experiment.

Results are presented in the bottom row of Figure Figure 4. We consider three distributions of goals: 1) seen goals,
in which the agent constructs φ-relative options for goals it sees during learning (Figure 4d); 2) unseen but friendly
goals, containing some goals the agent did not see during the construction of the options, but are close to those seen
during the option construction (Figure 4e), and 3) unseen but adversarial goals, where the agent is faced with some
goals not seen during construction of the options that are distant from those seen (Figure 4f). As expected, when
the agent faces familiar goals, the abstraction-equipped learner is far more sample efficient than other approaches.
Indeed, in under fifty episodes, Q-Learning-φ,O tends to find a high-value policy as seen in Figure 4d. Conversely,
as the goals shift to being out of distribution, the improvement is less significant, as showcased by the drop in the
green line’s performance in Figure 4e. In the adversarial case, we construct goals that avoid representation by the
φ-relative options the agent has constructed, thereby ensuring worse overall performance than the baseline learner.
We find that the eigenoptions, given primitives, can learn faster than the baseline in some cases, and is typically
competitive. Without primitives, however, eigenoptions can never discover a good policy, since no high-value policies
can be represented.

B.2 Experiment: Value Loss

We next establish further empirical support of our main result by contrasting the value loss of basic abstraction
types in small MDPs.

Four Rooms Lava Maze Random Hanoi Taxi

maxπ∈ΠM V π(s0) 0.86 0.71 76.12 0.74 0.94
maxπ∈ΠOφ

V π(s0) 0.85 0.70 72.12 0.66 0.94

Table 2
In Table 2 we illustrate the value loss of our first class of value preserving φ-relative options (Oφ,Q∗ε ) in simple MDPs.
Each row indicates the value (shown in blue) of the best policy representable using the policy space induced by the
abstractions. As expected, the value preserving options can still represent a near-optimal policy in each MDP. For
instance, in Four Rooms, ΠOφ achieves value of 0.85 compared to the optimal value of 0.86.

In short, we find support for our main theorem: value preserving φ-relative options can in fact preserve representation
of near-optimal policies when reasoning only in terms of options. In most MDPs tested, the optimal policy over
options only deviates from V ∗ by a small amount, as expected.
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