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Abstract

The Bayes-Adaptive Markov Decision Process (BAMDP) formalism pursues the
Bayes-optimal solution to the exploration-exploitation trade-off in reinforcement
learning. As the computation of exact solutions to Bayesian reinforcement-learning
problems is intractable, much of the literature has focused on developing suitable
approximation algorithms. In this work, before diving into algorithm design, we
first define, under mild structural assumptions, a complexity measure for BAMDPs.
As efficient exploration in BAMDPs hinges upon the judicious acquisition of infor-
mation, our complexity measure highlights the worst-case difficulty of gathering
information and exhausting epistemic uncertainty. To illustrate its significance, we
establish a computationally-intractable, exact planning algorithm that takes advan-
tage of this measure to show improved planning complexity. We then conclude
by introducing a specific form of state abstraction with the potential to reduce
BAMDP complexity that gives rise to a computationally-tractable, approximate
planning algorithm.

1 Introduction

The Bayes-Adaptive Markov Decision Process (BAMDP) [Duff, 2002] is a classic formalism encap-
sulating the optimal treatment of the exploration-exploitation trade-off by a reinforcement-learning
agent with respect to prior beliefs over an uncertain environment. Unfortunately, the standard formu-
lation suffers from an intractably-large hyperstate space (that is, the joint collection of environment
states coupled with the agent’s current state of knowledge over the unknown environment) and much
of the literature has been dedicated to identifying suitable approximations [Bellman and Kalaba,
1959, Dayan and Sejnowski, 1996, Duff and Barto, 1997, Dearden et al., 1998, Strens, 2000, Dulff,
2001, 2003b,a, Wang et al., 2005, Poupart et al., 2006, Castro and Precup, 2007, Kolter and Ng,
2009, Asmuth et al., 2009, Dimitrakakis, 2009, Sorg et al., 2010, Araya-Lépez et al., 2012, Guez
etal., 2012, 2013, 2014, Ghavamzadeh et al., 2015, Zintgraf et al., 2019]. In this work, we take steps
toward clarifying the hardness of BAMDPs before outlining an algorithmic concept that may help
mitigate problem difficulty and facilitate near-optimal solutions.

First, we introduce the notion of information horizon as a complexity measure on BAMDPs, char-
acterizing when it is truly difficult to identify the underlying uncertain environment. Naturally, the
agent’s state of knowledge at each timestep (a component of the overall BAMDP hyperstate) reflects
its current epistemic uncertainty and, as the agent accumulates data, this posterior concentrates,
exhausting uncertainty and identifying the true environment; after this point, the Bayes-optimal
policy naturally coincides with the optimal policy of the underlying Markov Decision Process (MDP).
Simply put, the information horizon quantifies the worst-case number of timesteps needed for the
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agent to reach this point whereupon there is no more information to be gathered about the uncertain
environment.

With this complexity measure in hand, we then entertain the idea of epistemic state abstraction
as an effective algorithmic tool for trading off between reduced information horizon (complexity)
and near-Bayes-optimality of the corresponding planning solution. Intuitively, as the total number
of knowledge states an agent may take on drives the intractable size of the hyperstate space, we
operationalize state abstraction [Li et al., 2006, Abel et al., 2016] to perform a lossy compression of
the epistemic state space, inducing a “smaller” and more tractable BAMDP for planning; our results
not only mirror those in analogous work on state aggregation for improved efficiency in traditional
MDP planning [Van Roy, 2006] but also parallel similar findings [Hsu et al., 2007, Zhang et al., 2012]
on the effectiveness of belief state aggregation in partially-observable MDP (POMDP) [Kaelbling
et al., 1998] planning.

On the whole, our work provides one possible answer to a question that has already been asked
and answered several times in the context of MDPs [Bartlett and Tewari, 2009, Jaksch et al., 2010,
Farahmand, 2011, Maillard et al., 2014, Bellemare et al., 2016, Arumugam et al., 2021, Abel et al.,
2021]: how hard is my BAMDP? While the remainder of the paper goes on to examine how one
particular mechanism for reducing this complexity can translate into a more efficient planning
algorithm, we anticipate that this work can serve as a starting point for building a broader taxonomy
of BAMDPs, paralleling existing structural classes of MDPs [Jiang et al., 2017, Sun et al., 2019,
Agarwal et al., 2020, Jin et al., 2021].

2 Problem Formulation

In this section, we formally define BAMDPs as studied in this paper. As a point of contrast,
we begin by presenting the standard MDP formalism used throughout the reinforcement-learning
literature [Sutton and Barto, 1998]. Throughout the paper, we use A(X) to denote the set of all
probability distributions with support on an arbitrary set X’ and define [N] = {1,2,..., N}, for any
natural number N € N.

2.1 Markov Decision Processes

We begin with a sequential decision-making problem represented via the traditional finite-horizon
Markov Decision Process (MDP) [Bellman, 1957, Puterman, 19941 (S, A, R, T, 3, H) where S is a
finite set of states, A is a finite set of actions, R : S x A — [0, 1] is a deterministic reward function,
T :8 x A — A(S) is a transition function prescribing next-state transition distributions for all
state-action pairs, 5§ € A(S) is an initial state distribution, and H € N is the horizon denoting the
agent’s total number of steps or interactions with the environment. An agent’s sequential interaction
within this environment proceeds in each timestep h € [H] by first observing the current state
sp € S, selecting an action aj, € A, and then enjoying a reward R (s, ay) as the environment
transitions to sp4+1 ~ 7 (- | Sn, an); naturally, the initial state s; ~ 5(-). An agent’s action selections
are governed by its non-stationary policy 7: a collection of H stationary, deterministic policies
m = (m,m2,...,7H), Wwhere Vh € [H], 7, : S — A. We quantify the performance of policy  at
timestep h € [H] by its induced value function V;7 : & — R denoting the expected sum of future

H
rewards by deploying policy 7 from a particular state s € S: V™ (s) = E [ > R(sn,ap) | sn=s|,
h'=h J

where the expectation integrates over randomness in the environment transitions. Analogously, we
define the action-value function induced by policy 7 at timestep h as @} : S x A — R which denotes
the expected future sum of rewards by being in a particular state s € S, executing a particular action

H
a € A, and then following policy = thereafter: Q} (s,a) = E [ > R(sw,an) | sp=s,an =al.
h'=h J

We are guaranteed the existence of an optimal policy 7* that achieves supremal value V,*(s) =
sup V" (s) forall s € S, h € [H] where the policy class contains all stationary, deterministic policies
mell

Il ={r|n:S8 — A}. Since rewards are bounded in [0, 1], we have that 0 < V;(s) < V;(s) <
H—h+1forall s € S,h € [H], and 7. These value functions obey the Bellman equation and the



Bellman optimality equation, respectively:

Vii(s) = Qf (s, mn(s)) Vi (s) = max Qj (s, a)
Q;zr(s’ a) = R(Sv a) + ES’NT(-\S,a) [‘/;:Tr+1(sl)] QZ(Sa a) = R(S’ a) + IEs/~7’(-\5,a) [Vh:-l(‘g/)} :
Viia(s) =Vii(s) =0 Vse S

2.2 Bayes-Adaptive Markov Decision Processes

The BAMDP formalism offers a Bayesian treatment of an agent interacting with an uncertain MDP.
More specifically, a decision-making agent is faced with a MDP M = (S, A, R, Ty, 8, H) defined
around an unknown transition function 7y, for some latent parameter § € ©. Prior uncertainty in
0 is reflected by the distribution p(#). In classic work on BAMDPs with finite state-action spaces,
the prior p(0) is a Dirichlet distribution, so as to leverage the convenience of Dirichlet-multinomial
conjugacy for exact posterior updates [Duff, 2002, Poupart et al., 2006]. For our purposes, we will
assume an alternative parameterization whose importance will be made clear later when defining our
complexity measure.

Assumption 1. We assume that © is known and |©| < oo such that an agent is only ever reasoning
about its uncertainty over a finite set of |©| known MDPs.

Under Assumption 1, an agent’s prior uncertainty in 7y is reflected by the distribution p(6) € A(©)
which, with each step of experience encountered by the agent, may be updated via Bayes’ rule to
recover a corresponding posterior distribution in light of observed data from the environment. For
simplicity, we assume access to an oracle deterministic operator B : A(0) x S X A x S — A(O)
that performs an exact posterior update to any input distribution p € A(©) based on the experience
tuple (s,a,s’) € S x A x Sin O(1) time.

The corresponding BAMDP for M is defined around a so-called hyperstate space X = S x A(O)
such that any hyperstate x = (s,p) € X contains the agent’s original or physical state s € S
within the true MDP while p € A(©) denotes the agent’s information state or epistemic state [Lu
et al., 2021] about the uncertain environment; intuitively, the epistemic state represents the agent’s
knowledge of the environment based on all previously observed data. This gives rise to the BAMDP
(X, A,R,T,B, H) where A is the same action set as the original MDP M, R : X x A — [0, 1] is
the same reward function as in M (that is, R((s, p),a) = R(s,a) ¥(s,p) € X,a € A), B € A(X)
is defined as 3 = 3 x d,,(g) Where d,,(5) denotes a Dirac delta centered around the agent’s prior p(6),
and H is the same horizon as MDP M. Due to the determinism of the posterior updates given by B,
the BAMDP transition function 7 : X x A — A(X) is defined as

TUs 2') | {s,p),a) =D To(s' | 5,a)p(0)1 (0 = B(p,s,a,5")).
=)

The associated BAMDP policy 7 = (71, 7o, ..., 7g), 7p : X — A, Vh € [H] selects actions based
on the current state of the MDP as well as the agents accumulated knowledge of the environment
thus far. With these components, we may define the associated BAMDP value functions:

Vir((s,p)) = Qr({s,p), m((s,p)))

Qr((s,p),a) =R(s,a) + 5207'9(8’ | 5,a)p(O)Vy7 1 ((s', B(p, s, a,5"))) 7
Viiii({s,p)) =0 V(s,p) € X
Vi ((s:p)) = max Q};((s, p), a)

Qr((s,p),a) = R(s,a) + S%%(Sl | 5,a)p(0)Vyy 1 ((s', B(p, s,a,5")))

Viia((s,p) =0 V(s,p) € X

Based on these optimality equations, we see that the optimal policy of a BAMDP achieving supremal
value V}* across all timesteps h € [H] is the Bayes-optimal policy which appropriately balances the
exploration-exploitation trade-off in reinforcement learning. An observation is that this Bayes-optimal
policy will tend to achieve lower value than the common optimal policy of MDP M as the agent
takes more informative (possibly sub-optimal) actions to identify the true underlying environment.



3 The Complexity of BAMDP Planning

In this section, we examine the difficulty of solving BAMDPs through the lens of a classic planning
algorithm: value iteration [Bellman, 1957]. We begin with an quick review of the traditional algorithm
applied to our setting before introducing information horizon as a complexity measure for BAMDPs.
This quantity gives rise to a more efficient planning algorithm for BAMDPs that waives excessive
dependence on the original problem horizon. In order to facilitate an analysis of planning complexity
in BAMDPs via value iteration, we require a finite hyperstate space X’. For now, we will assume
that X is finite, but still considerably large, by virtue of an aggressively-fine quantization of the
(|®] — 1)-dimensional simplex:

Assumption 2. The BAMDP hyperstate space X = S x A(©) is finite,

X| < o0

3.1 Naive Value Iteration

To help build intuitions, we begin by presenting a typical version of value iteration for finite-horizon
BAMDPs as Algorithm 1. This algorithm iterates backwards through the H timesteps, computing
Q7. across every hyperstate-action pair. With the provision of our posterior update oracle B, we
avoid a square dependence on the hyperstate space (]X|?) and instead only require O(|S||©])
to compute next-state value. Consequently, the resulting planning complexity of Algorithm 1 is
O(|X||A||S||©|H). Clearly, this represents an onerous burden for two distinct reasons: (1) we are
forced to contend with a potentially very large horizon H and (2) we must also search through the
entirety of the hyperstate space, X'. In the sections that follow, we address challenges (1) and (2)
in series, using our new notion of information horizon to mitigate the impact of H and leveraging
epistemic state abstraction to further reduce the role of |X'|, where the latter occurs at the cost of
introducing approximation error.

Algorithm 1 Value Iteration for BAMDPs

: Input: BAMDP (X, A, R, T,53, H)
: V;I+1(<Svp>) = 0,V<8,p> eX
cforh=H H—-1,...,1do
for (s,p) € X do
fora € Ado
Qi((5.p).@) = R(5,0) + 3 ol | 5,0)p(0) i (5 Blp. 5.0.5)

SAR A S

7 end for
8 Vi ((s,p)) = max Q5 ((s, p), a)
9: end for
0: end for

3.2 Information Horizon

As noted in the previous section, our planning complexity suffers from its dependence on the BAMDP
horizon H. A key observation, however, is that once an agent has completely resolved its uncertainty
and identified one of the |©| environments, all that remains is to deploy the optimal policy for that
particular MDP. As an exaggerated but illustrative example of this, consider a BAMDP where any
action executed at the first timestep completely identifies the true environment § € ©. With no
residual uncertainty left in the epistemic state, the Bayes-optimal policy would now completely
coincide with the optimal policy and take actions without changing the epistemic state since, at this
point, the agent has acquired all the requisite information about the previously unknown environment.
Even if the problem horizon H is substantially large, a simple BAMDP like the one described should
be fairly easy to solve because epistemic uncertainty is so easily diminished and information is
quickly exhausted; it is this principle that underlies our hardness measure.

Let 7 be an arbitrary non-stationary policy. For any hyperstate € X, we denote by P™ (x}, = x) the
probability that policy 7 visits hyperstate = at timestep h. With this, we may define the reachable
hyperstate space of policy 7 at timestep h € [H] as

Xy ={xeX|P(xp =2) >0} CX.



In words, the reachable hyperstate space of a policy 7 at a particular timestep is simply the set of
all possible hyperstates that may be reached by 7 at that timestep with non-zero probability. Recall
that for any hyperstate z = (s,p) € X, the epistemic state p € A(O) is a (discrete) probability
distribution, for which we may denote its corresponding entropy as H(p). Given a BAMDP, we define
the information horizon of a policy 7 as

I(m) = inf{h € [H] | Yoy, = (sn,pn) € &y, H(pn) = 0}.

The information horizon of a policy, if it exists, identifies the first timestep in [H] where, regardless
of precisely which hyperstate is reached by following 7 at this timestep, the agent has fully resolved
all of its epistemic uncertainty over the environment . At this point, we call attention back to our
structural Assumption 1 for BAMDPs and note that, under the standard parameterization of epistemic
state via count parameters for Dirichlet priors/posteriors, we would only be able to assess residual
epistemic uncertainty through differential entropy which, unlike the traditional (Shannon) entropy
H(-), is potentially negative and has no constant lower bound [Cover and Thomas, 2012]." Naturally,
to compute the information horizon of the BAMDP, we need only take the supremum across the
non-stationary policy class: Z = sup Z(w), where IT = {X — A}.
TellH

Clearly, when it exists, 1 < Z < H; the case where Z = 1 corresponds to having a prior p(#) that is
itself a Dirac delta dy centered around the true environment, in which case, ¢ is known completely
and the agent may simply compute and deploy the optimal policy for the MDP (S, A, R, Tg, 5, H).
At the other end of the spectrum, an information horizon Z = H suggests that, in the worst case,
an agent may need all H steps of behavior in order to fully identify the environment. In the event
that there exists any non-stationary policy 7 for which the infimum of Z(7) does not exist (that is,
Z(m) = 0), then clearly Z = oo; this represents the most difficult, worst-case scenario wherein
an agent is entirely unable to fully resolve its epistemic uncertainty within the specified problem
horizon H. We now go on to show how the information horizon can be used to design a more efficient
BAMDP planning algorithm whose planning complexity bears a more favorable dependence on this
problem horizon.

3.3 Informed Value Iteration

The key insight from the previous section is that once an agent has acted for Z timesteps in any
BAMDP, the Bayes-optimal policy necessarily falls back to the optimal policy associated with the
true environment. Consequently, if the solutions to all |©| possible underlying MDPs are computed
up front, an agent can simply backup their optimal values starting from the Zth timestep, rather
than backing up values beginning at the original horizon H. This high-level idea is implemented as
Algorithm 2 which assumes access to a sub-routine mdp_value_iteration that consumes a MDP
and produces the associated value function for the initial timestep, V7"

Since the underlying unknown MDP is one of |©| possible MDPs, Algorithm 2 proceeds by first
computing the optimal value function associated with each of them in sequence using standard value
iteration, incurring a time complexity of O(|©||S|?|.A|(H — I)). Note that the horizon of each MDP
is reduced to H — 7 acknowledging that, after we determine the problem in Z steps, an agent has
only H — 7 steps of interaction remaining with the environment. With these |©| solutions in hand,
the remainder of the algorithm proceeds with standard value iteration for BAMDPs (as in Algorithm
1), only now backpropagating value from the 7 timestep, rather than the original problem horizon H.
Note that in Line 9, we could also compute the corresponding 6 in question by taking the mean of the
next epistemic state p’, however, we use this calculation to make explicit the fact that, by definition
of the information horizon, the agent has no uncertainty in § at this point. As a result, instead of
planning complexity that scales the hyperstate space size by a potentially large problem horizon,
we incur a complexity of O (|0||S||A| (|X|Z + |S|(H — I))). Naturally, as the gap between the
information horizon Z and problem horizon H increases, the more favorably Algorithm 2 performs
relative to the standard value iteration procedure of Algorithm 1.

In this section, we’ve demonstrated how the information horizon of a BAMDP has the potential to
dramatically reduce the computational complexity of planning. Still, however, the corresponding

"Prior work (see, for example, Theorem 1 of Kolter and Ng [2009]) operating with the Dirichlet parameteri-
zation will make an alternative assumption for similar effect where epistemic state updates cease after a certain
number of state-action pair visitations.



Algorithm 2 Informed Value Iteration for BAMDPs

1: Input: BAMDP (X, A, R, T, 3, H), Information horizon Z < co
2: for 6 € © do

3: V4 =mdp_value_iteration((S,A,R, Ty, 5, H — 1))
4: end for
5:forh=7-1,7-2,...,1do
6: for (s,p) € X do
7.
8
9
0
1

for a € Ado
if h +1 == 7 then
for s’ € Sdo
p' = B(p,s,a,s)
0= > 01(p'(0) =1)

6cO
12 Vi (8 9)) = V2
13: end for
14: end if
15: Q1 ((s,p),a) = R(s,a) + 2%7’9(8’ | 5,a)p(0) Vi1 ((s", B(p, 5,0, "))
16: end for ,
17: Vi ({s,p)) = max Q5 ((s, p), a)
18:  end for
19: end for

guarantee bears an unfavorable dependence on the size of the hyperstate space X’ which, in the reality
that voids Assumption 2, still renders both Algorithms 1 and 2 as computationally intractable. Since
this is likely inescapable for the problem of computing the exact optimal BAMDP value function, the
next section considers one path for reducing this burden at the cost of only being able to realize an
approximately-optimal value function.

4 Epistemic State Abstraction

Since Assumption 2 is unrealistic, this section approaches approximate BAMDP planning through
the lens of a classic technique from the MDP literature for reducing the size of the state space while
preserving near-optimal behavior.

4.1 Compressing the Epistemic State Space

In this section, we introduce epistemic state abstraction for BAMDPs with the goal of paralleling
the benefits of state abstraction in MDPs (please see Section C for a brief overview). In particular,
we leverage the fact that our epistemic state space A(©) = Al®I=1 is the (|©| — 1)-dimensional
probability simplex. Recall that for any set Z; any threshold parameter § > 0; and any metric
p:ZxZ — RtonZ, aset{z,29,...,2K} is a d-cover of Z if Vz € Z, Ji € [K] such that
p(z,z;) < 4. In this work, we will consider d-covers with arbitrary parameter 6 > 0 defined on the
simplex Al®I=1 with respect to the total variation distance metric on probability distributions, denoted
|| - |lrv. Let e; € A(©) be the ith standard basis vector such that H(e;) = 0, Vi € [|©|]. We define
an epistemic state abstraction with parameter § > 0 as the projection from A(©) onto the smallest
d-cover of A(©) with respect to || - ||y that contains all standard basis vectors {e1, ez, .., €0}
paralleling notation for the -covering number, we use N (A(©), 4, || - ||rv) to denote the size of this
minimal cover and, for consistency with the state-abstraction literature in MDPs, use ¢ : A(©) —
A4 (©) to denote the epistemic state abstraction. Briefly, we note that while computing exact d-covers
is a NP-hard problem, approximation algorithms do exist [Hochbaum, 1996, Zhang et al., 2012];
our work here is exclusively concerned with establishing theoretical guarantees that warrant further
investigation of such approximation techniques to help solve BAMDPs in practice.

It is important to note that while there are numerous statistical results expressed in terms of covering
numbers (for instance, Dudley’s Theorem [Dudley, 1967]), our definition of covering number differs
slightly in its inclusion of the standard basis vectors. The simple reason for this alteration is that it



ensures we may still count on the existence of abstract epistemic states for which an agent has fully
exhausted all epistemic uncertainty in the underlying environment. Consequently, we are guaranteed
that the information horizon is still a well-defined quantity under this abstraction?. As ¢ increases,
larger portions of the epistemic state space where the agent has residual, but still non-zero, epistemic
uncertainty will be immediately mapped to the nearest standard basis vector under ¢. If such a
lossy compression is done too aggressively, the agent’s beliefs over the uncertain environment may
prematurely and erroneously converge. On the other hand, if done judiciously with a prudent setting
of 4, one has the potential to dramatically reduce the complexity of planning across a much smaller,
finite hyperstate space and recover an approximately-optimal BAMDP value function.

To make this intuition more precise, consider an initial BAMDP (X, A, R, T, 3, H) and, given an
epistemic state abstraction ¢ : A(©) — A4 (©) with fixed parameter § > 0, we recover an induced
abstract BAMDP (X, A,ﬁqh?gﬁag(p, H) where, most importantly, Xy, = S x Ay(0O). Just as in
the MDP setting, the model of the abstract BAMDP depends on a fixed, arbitrary weighting function
of the original epistemic states w : A(O) — [0, 1] that adheres to the constraint: Vpy, € Ay(O),
/ 6-1(ps) w(p)dp = 1, which means abstract rewards and transition probabilities are given by

Rolls.poha) = [ Rlls.p)aetprdp

/ R(s, a)w(p)dp = R(s, a) / w(p)dp = R(s,a)
¢~ H(pg) ¢~ 1(py)

Tl Lo = [ w) 3 T8 sophadp

pES1(p),)

/¢_1(, ) > To(s' | 5,)p(O)1 (B(p,s,a.) € 67" (p)y)) dp.

0c©

The initial abstract hyperstate distribution is defined as 35 = 8 X dg4(,(9)) Where 3 € A(S) denotes
the initial state distribution of the underlying MDP while 04(,,(4)) is a Dirac delta centered around the
agent’s original prior, p(6), projected by ¢ into the abstract epistemic state space. Observe that the
abstract BAMDP transition function is stochastic with respect to the next abstract epistemic state pfﬁ,
unlike the original BAMDP transition function whose next epistemic states are deterministic. This is,
perhaps, not a surprising observation as it also occurs in standard state aggregation of deterministic
MDPs as well. Nevertheless, it is important to note the corresponding abstract BAMDP value
functions must now acknowledge this stochasticity:

Vin((s:pe)) = QF n((5:pg), ™ ({5, Pg)))
Qfn((5,ps),a) = R(s,a) + 35 To((s' 1) | (5,06), )V 11 ({5, 94))
Vigi((s;pg)) =0 V{s:pg) € Xy

Via(ls, po)) = max @3, (5, p), )
Qi((5:20) @) = R(5,0) + 3 Tolls'04) | (5,06, @)V (5',25))

s'\pl

Viria({s,pe)) =0 (s,p) € Xy

Beyond the fact that this abstract BAMDP enjoys a reduced hyperstate space, we further observe
that the information horizon of this new BAMDP, 7, is potentially smaller than that of the original
BAMDP; if 7 steps are needed to fully resolve epistemic uncertainty in the original BAMDP then, by
compressing the hyperstate space via ¢, we may find epistemic uncertainty exhausted in fewer than Z
timesteps within the abstract BAMDP.

Furthermore, for a suitably large setting of the § parameter, we also have cases where the original
BAMDP has T = oo while Zs < oo; in words, whereas it may not have been possible to resolve

Note that an alternative would be to introduce an additional constant v € R™ and define the information
horizon based on H(p) < +; our construction avoids carrying this cumbersome additional dependence in the
results.



all epistemic uncertainty within H timesteps, compression of the epistemic state space reduces this
difficulty in the abstract problem as knowledge states near (in the total-variation sense) each vertex
of the probability simplex e; are immediately aggregated. As a toy illustration of this, consider a
¢ with § sufficiently large such that any step from the agent’s prior distribution immediately maps
to a next abstract hyperstate with no epistemic uncertainty. Clearly, regardless of Z, we have an
abstract BAMDP where Z = 2. Of course, under such an aggressive abstraction, we should expect
to garner an unfavorable degree of approximation error between the solutions of the abstract and
original BAMDPs. The next section makes this error analysis and performance loss precise alongside
an approximate planning algorithm that leverages the reduced complexity of abstract BAMDPs to
recover a near-optimal solution to the original BAMDP of interest.

4.2 Informed Abstract Value Iteration

Observe that if, after inducing the abstract BAMDP according to a given epistemic state abstraction
@, the resulting information horizon is finite Z, < oo, then we are in a position to run Algorithm 2 on
the abstract BAMDP. Moreover, we no longer need the crutch of Assumption 2 as, by definition of
¢, we are guaranteed a finite abstract hyperstate space of size |Xy| = |S| - N (A(©),d,]| - ||Tv) <

|S]| (1 + %) |e\. With the solution to the abstract BAMDP in hand, we can supply values to any input
hyperstate of the original BAMDP z = (s,p) € X by simply applying ¢ to the agent’s current

epistemic state p and querying the value of the resulting abstract hyperstate (s, ¢(p)) € X, We
present this approximate BAMDP planning procedure as Algorithm 3.

Algorithm 3 Informed Abstract Value Iteration for BAMDPs

1: Input: BAMDP (X, A, R, T, (3, H), Information horizon Z, Epistemic state abstraction ¢
Induce abstract BAMDP My = (X4, A, Ry, T g, B4, H) with abstract information horizon
I¢ < 0
for 6 € © do

Vy = mdp_value_iteration((S, A, R, Ty, 8, H — Iy))
end for
forh=74—-1,745—-2,...,1do

for (s,py) € X, do

for a € Ado
if h +1 == 1, then
for (s, py,) € X, do

0= 01(pj(0) =1)
EG)

Vi (5, 9)) = V2

13: end for

14: end if o

15: Q5 n((8,p0),a) = R(s,a) + > Te((s',0y) | (8:pg)s )V 1 ({8, 15))

s'\p

N

_
YN sw

—

,_
N

16: end for
17: Vin((s,pg)) = max Q3 ,((s,ps), a)
18:  end for

19: Vi¥((s,p)) = Vi, ((s,¢(p)))
20: end for

By construction, this algorithm inherits the planning complexity guarantee of Algorithm 2, specialized
to the abstract BAMDP input, yielding O (|O||S|?|A| (MN(A(©),6, || - ||tv)*Zy + (H — Iy))). A
key feature of this result is that we entirely forego a dependence on the hyperstate space of the
original BAMDP and, instead, take on dependencies with the size of the abstract hyperstate space,
|X)? = |SIPN(A(O),6,]] - |ITv)?, and the abstract information horizon Z,. While both terms
decrease as & — 1, there is a delicate balance to be maintained between the ease with which one may
solve the abstract BAMDP and the quality of the resulting solution when deployed in the original
BAMDP of interest. We dedicate the remainder of this section to making this balance mathematically
precise. All proofs can be found in Section D of the Appendix. A natural first step in our analysis is
to establish an approximation error bound:



Proposition 1. For any h € [H|, let V}* and Vq; ;, denote the optimal original and abstract BAMDP
value functions, respectively. Let ¢ be an epistemic state abstraction as defined above. Then,

max |Vyi (2) — Vi n(é(2))] < 20(H — h)(H — h +1).

In order to establish a complimentary performance-loss bound, we require an intermediate result
characterizing performance shortfall of a BAMDP value function induced by a greedy policy with
respect to another near-optimal BAMDP value function. The analogue of this result for discounted
MDPs is proven by Singh and Yee [1994], and the proof for BAMDPs follows similarly.

Proposition 2. Let V = {V1,Va,...,Vi} be an arbitrary BAMDP value function. We denote by
v the greedy policy with respect to V defined as

mhy (x) = argmax | R(z,a) + > To(s' | 5,0)p(0) Vi (') Vo = (s,p) € X,
acA 0.5

where 2’ = (s',B(p, s,a,s")) € X. Recall that Vi, denotes the optimal BAMDP value function at
timestep h + 1 and 7}, denote the Bayes-optimal policy. If for all h € [H)], for all s € S, and for any
p,q € A(O)

Vi ((s,0)) = Va((s, )| < &, then ||V} = V"V || < 26(H — h+1).

3

Combining Propositions 1 and 2 immediately yields a corresponding performance-loss bound as
desired, paralleling the analogous result for state aggregation in MDPs (see Theorem 4.1 of Van Roy
[2006]):

Proposition 3. Let 7}, ;, denote the greedy policy with respect to VJ ), . ;. Then,

Vi — VI ||oo < 46(H — B)(H — h+ 1)2.

5 Discussion & Conclusion

In this work, we began by characterizing the complexity of a BAMDP via an upper bound on
the total number of interactions needed by an agent to exhaust information and fully resolve its
epistemic uncertainty over the true environment. Under an assumption on the exact form of the
agent’s uncertainty, we showed how this information horizon facilitates more efficient planning when
smaller than the original problem horizon. Recognizing the persistence of the intractable BAMDP
hyperstate space, we then outlined epistemic state abstraction as a mechanism that not only induces a
finite, tractable hyperstate space but also has the potential to incur a reduced information horizon
within the abstract problem. Through our analysis of approximation error and performance loss, we
observe an immediate consequence of Proposition 3: if one wishes to compute an e-optimal BAMDP
value function for an original BAMDP of interest, one need only find the m-cover of
the simplex, A(©), and then apply the corresponding epistemic state abstraction through Algorithm

3, whose planning complexity bears no dependence on the hyperstate space of the original BAMDP
and has reduced dependence on the problem horizon.
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A Algorithms

Here we present all algorithms discussed in the main paper.

Algorithm 1 Value Iteration for BAMDPs

1: Input: BAMDP (X, A, R, T, 5, H)

2: Vi 1 ((s,p) = 0,¥(s,p) € X

3: forh=H,H—1,...,1do

4:  for (s,p) € X do

5: fora € Ado

6: Qi((5.9). @) = R(5,0) + 3 To( | 5,0)p(0) iy (5 Blp. .0.5)
end for ’
Vi ((s,p)) = max Q5 ((s, p), a)

7

8

9: end for
10: end for

Algorithm 2 Informed Value Iteration for BAMDPs

1: Input: BAMDP (X, A, R, T, 3, H), Information horizon Z < oo
2: for 6 € © do

3:  Vj =mdp_value_iteration((S, A, R,7s, [, H —I))

4: end for

5:forh=7-1,7-2,...,1do

6: for (s,p) € X do

7: for a € Ado

8: if h + 1 == 7 then

9: for s’ € Sdo
10: p' = B(p,s,a,s)
11: 0= > 01(p'(0)=1)

0o

2 Vi (1)) = V2
13: end for
14: end if
Is: Qh(5.0).0) = R(s.) + £ To(s' | 8,0)p(0)Vi (5 Blp. .0.)
16: end for
7 Vi((s,) = max@i((s.p),a)
18:  end for
19: end for
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Algorithm 3 Informed Abstract Value Iteration for BAMDPs

1: Input: BAMDP (X, A, R, T, 3, H), Information horizon Z, Epistemic state abstraction ¢
Induce abstract BAMDP M, = (X, A,ﬁqﬁ 7}5, 545, H) with abstract information horizon
I¢ < 0
for 0 € © do

Vy = mdp_value_iteration((S,A,R,Ts, 8, H — Iy))
end for
forh=74—-1,74—-2,...,1do

for (s,py) € X, do

for a € Ado
if h +1 == 17, then
for (s, py,) € X, do

0= 0L(p,(0) =1)
fco

N

_
TeYeRansw

—

12: Vi (s py) = V2

13: end for

14: end if o

15: Q5.1 ((s,p0),a) = R(s,a) + > To((s',p}) | (8:06), )V 1 ({8 D))
s’,p;

16: end for

17: Vg,h(<sap¢>) = I;leajl( Q;’h«sapd)% a)

18:  end for

19: Vir((s,p) = Vi, ((s, 6(p)))

20: end for

B Related Work

Bellman and Kalaba [1959] offer the earliest formulation of Bayesian reinforcement learning, whereby
the individual actions of a decision-making agent not only provide an update to the physical state
of the world but also impact the agent’s internal model of how the world operates. Dayan and
Sejnowski [1996] follow this line of thinking to derive implicit exploration bonuses based on how an
agent performs posterior updates. Kolter and Ng [2009] make this more explicit and incorporate a
specific visitation-based bonus that decays with the concentration of the agent’s Dirichlet posterior.
As an alternative, Sorg et al. [2010] incorporate an exploration bonus based on the variance of
the agent’s posterior while Araya-Loépez et al. [2012] achieve optimistic exploration by boosting
transition probabilities. Duff and Barto [1997] identify multi-armed bandits (that is, MDPs with
exactly one state and arbitrarily many actions) as a unique setting where the Bayes-optimal solution
is computationally tractable through the use of Gittins indices [Gittins, 1979]. While the vast space
of more complicated BAMDPs are computationally intractable, a goal of this paper is to add a bit of
nuance and clarify when one might still hope to recover more efficient, approximate planning. This is
also distinct from the PAC-BAMDP framework introduced by Kolter and Ng [2009], which serves as
a characterization of algorithmic efficiency, rather than problem hardness.

Representing uncertainty in the optimal value function rather than environment transition function,
Dearden et al. [1998] derive a practical Bayesian ()-learning algorithm by foregoing representation
of the epistemic state and instead resampling (Q*-values at each timestep. Strens [2000] finds an
alternate, tractable solution by updating epistemic state at the level of whole episodes, rather than
individual timesteps; a long line of work [Agrawal and Goyal, 2012, 2013, Agrawal and Jia, 2017,
Osband et al., 2016a,b, Osband and Van Roy, 2017, O’Donoghue et al., 2018, Osband et al., 2019]
analyzes this type of approximation to the Bayesian reinforcement-learning problem theoretically
and also explores how to scale these solution concepts with deep neural networks.

[Duff, 2001] find tractability in representing policies as finite-state stochastic automata, noting
structural similarities between BAMDPs and partially-observable MDPs (POMDPs) [Kaelbling
et al., 1998]; this type of thinking is further extended by Poupart et al. [2006] who exploit similar
structure between the optimal value functions of BAMDPs and POMDPs. Duff [2003a] examine
improved memory requirements when applying actor-critic algorithms [Konda and Tsitsiklis, 2000]
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to BAMDPs while Duff [2003b] consider how to approximately model the stochastic process of
the evolving epistemic state via diffusion models. Wang et al. [2005] introduce a sparse-sampling
approach [Kearns et al., 2002] for balancing computational efficiency against fidelity to Bayes-
optimal action selection. An analogous sparse-sampling approach is also developed by Castro and
Precup [2007], but with a linear-programming approach for value-function approximation. A line of
work [Guez et al., 2012, 2013, 2014] develops more scalable, sparse-sampling lookahead approaches
on the back of Monte-Carlo tree search [Kocsis and Szepesviri, 2006]; these algorithms are somewhat
similar in spirit to the approach of Asmuth et al. [2009] who merge multiple posterior samples into
a single model while Guez et al. [2014] keep each sample distinct and integrate out the posterior
randomness. For a more complete and detailed survey of Bayesian reinforcement learning, we refer
readers to Ghavamzadeh et al. [2015]. Crucially, the aforementioned approaches largely revolve
around ignoring the epistemic state, lazily updating the epistemic state, or approximating the impact
of the agent’s current beliefs via random sampling. In contrast, this work offers a new approach and
highlights how lossy compression of the epistemic state naturally reduces BAMDP hardness. Perhaps
the most related prior work is by Lee et al. [2018] who introduce a practical approximate-planning
approach by quantizing the epistemic state space; our work clarifies the theoretical ramifications of
this quantization step.

Our work is also connected to analyses of approximate value iteration [Bellman, 1957] in the MDP
setting [Tseng, 1990, Littman et al., 1995], where more recent work has managed to recover improved
sample complexity bounds for approximate value iteration [Sidford et al., 2018b,a]. Like Kearns
and Singh [1999], our algorithms utilize exact value iteration almost as a black box and it is an open
question for future work to see if similar ideas and proof techniques for these approximate variants
might be leveraged in the BAMDP setting.

C State Abstraction in MDPs

As numerous sample-efficiency guarantees in reinforcement learning [Kearns and Singh, 2002,
Kakade et al., 2003, Strehl et al., 2009] bear a dependence on the size of the MDP state space, |S|,
a large body of work has entertained state abstraction as a tool for improving the dependence on
state space size without compromising performance [Whitt, 1978, Bertsekas et al., 1988, Singh
et al., 1995, Gordon, 1995, Tsitsiklis and Van Roy, 1996, Dean and Givan, 1997, Ferns et al., 2004,
Jong and Stone, 2005, Li et al., 2006, Van Roy, 2006, Ferns et al., 2012, Jiang et al., 2015, Abel
et al., 2016, 2018, 2019, Dong et al., 2019, Du et al., 2019, Misra et al., 2020]. Broadly speaking,
a state abstraction ¢ : & — S, maps original or ground states of the MDP into abstract states in
Sy. Typically, one takes ¢ to be defined with respect to an abstract state space Sy with smaller
complexity (in some sense) than S; in the case of state aggregation where all spaces in question are
finite, this desideratum often takes very simple form of |Sy| < |S|. Various works have identified
conditions under which specific classes of state abstractions ¢ yield no approximation error and
perfectly preserve the optimal policy of the original MDP [Li et al., 2006], as well as conditions under
which near-optimal behavior is preserved [Van Roy, 2006, Abel et al., 2016]. As its name suggests,
our proposed notion of epistemic abstraction aims to lift these kinds of guarantees for MDPs over to
BAMDPs and address the intractably large hyperstate space.

Before examining BAMDPs, we provide a brief overview of how state abstraction impacts the
traditional MDP, as a point of comparison with the BAMDP setting. Given a MDP (S, A, R, T, 8, H),
a state abstraction ¢ : S — S, induces a new abstract MDP My = (Sy, A, Ry, T4, H) where the
abstract reward function R : Sy x A — [0, 1] and transition function 7 : Sy x A — A(Sy) are
both defined with respect to a fixed, arbitrary weighting function w : & — [0, 1] that, intuitively,
measures the contribution of each individual MDP state s € S to its allocated abstract state ¢(s).
More specifically, w is required to induce a probability distribution on the constituent MDP states
of each abstract state: Vsy € S5, >, w(s) = 1. This fact allows for well-defined rewards and
s€p™1(s0)
transition probabilities as given by

Ry(sg,a) = Z R(s,a)w(s) To(sy | 5¢,0a) = Z Z T(s"|s,a)w(s).

s€P™1(s4) s€EP1(sp) '€ (s))

As studied by Van Roy [2006], the weighting function w does bear implications on the efficiency of
learning and planning. Naturally, one may go on to apply various planning or reinforcement-learning
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algorithms to M and induce behavior in the original MDP M by first applying ¢ to the current state
s € S and then leveraging the optimal abstract policy or abstract value function of M. Conditions
under which ¢ will induce a MDP M, that preserves optimal or near-optimal behavior are studied
by Li et al. [2006], Van Roy [2006], Abel et al. [2016].

D Proofs

D.1 Proof of Proposition 1

Proposition 1. Let V) and V|, denote the optimal original and abstract BAMDP value functions,

respectively, for any timestep h € [H|. Let ¢ be an epistemic state abstraction as defined above.
Then,

max |V () = Vi, (6(2))| < 20(H = h)(H —h+1).

reX

Proof. With a slight abuse of notation, for any hyperstate x € X, let ¢(z) = (s,ps) € Xy
denote its corresponding abstract hyperstate where p, = ¢(p) € Ay(0O). For brevity, we define

p' 2 B(p,s,a,s'). We have

max |V () = Vg u(¢(a))] = max [maxQ}((s,p), a) — max Qg ({s,ps),a)l

TEX (s;p)EX  acA
< _ *
< (S_p;rigﬁ“\@h«&p%a) Q5.1 ((s,P0), )]
= <ISHIE)%X 5 | S, (l )Vh+1 Z T¢ 7p¢ <57p¢>a
’ s'.py,

We now leverage the standard trick of adding “zero” by subtracting and adding the following between
our two terms before applying the triangle inequality to separate them:

Zn s 0) | (5, p6), ) Viy (8, 0)).

s 7P¢

Examining the first term in isolation, we first observe that, by definition of the weighting function,
fd,—l(p(b) w(p)dp = 1 and so we have

Y Tols' | s,a)p(O) Vi ((s',9) = / w®) Y To(s' | 5,a)p(0) Vi (', ') dp.

’ ’
0, ¢~ (pgy) 0,5

Expanding with the definition of the abstract BAMDP transition function, we have

D Tl 000 | (5,000, Vi (159) = / 5 S Tols' | 5,0)pO) Vi ((5,0) 31 (B

8Pl 61 (py) 0.5’
¢~ 1(pg)

= [ @ T | s aplOVi (58

0 ’
&1 (po) s
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since qS( (1’)75 a,s’)) belongs to exactly one abstract epistemic state. Using the fact that
Vi ((s',p") < H - hand simplifying, we have

ST OV () [ ) ST | s apOVi ()

8. 6=1(py) 0,
< (H —h) / Z Ip(6)
¢~ (pe)
— =t [ w23 10) - p6)idp
=1 (pe) 0
—@ =1 [ @2 p6) - pO)|rvp
=1 (pe)
< 45(H — ) / w(p)dp
¢~ (pe)
— 46(H — h),

where the last upper bound follows from the definition of a §-cover since ¢(p) = ¢(P) = py,
VP € ¢~ (pg)-
Moving on to the second term and applying Jensen’s inequality, we have

| 32 Tl ) | oopebs a)Viaa (8,910) = 32 Tl | sopeds ) Vi (45 4)
S pd) S/p/
< 30 Tl o) | .2 @)[Vita((5'9) = Vi (5 91)
s’ p¢

< * _ * .
_2(163;4|Vh+1($) V¢,h+1(¢(ff))|
Thus, putting everything together, we have established that
max Vi () = Vi (6(@)] < 40(H = b) 4+ maas Vi1 (@) = Vi (6(2))

Iterating the same sequence of steps for the latter term on the right-hand side H — h more times, we
arrive at a final bound

H H—-h (
max [V (z) = Vin(9(2))] < D 46(H —h) =45 Y h =45
h=h h=1

H—h)(H—h+1)
2

= 25(H — h)(H — h +1).

O

D.2 Proof of Proposition 2

Proposition 2. Let V = {V1,Va,...,Vy} be an arbitrary BAMDP value function. We denote by
™, v the greedy policy with respect to V defined as

v (x) = argmax |R(z,a —|—ZT9 s | s,a)p(0)Vyy1(z") Vo = (s,p) € X,
acA 0.5

where 2’ = (s',B(p, s,a,s")) € X. Recall that V} , denotes the optimal BAMDP value function at

timestep h + 1 and w3, denote the Bayes-optimal policy. If for all h € [H|, for all s € S, and for any
p.q € A(O)

Vi ({s,0)) = Va({s, )| < & then ||Vy7 = V"V || < 2e(H — h+ 1).
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Proof. Fix an arbitrary timestep h € [H]. For any € X, define a,a € A such that ¢ = 7} (z) and
a = 7,y (x). Similarly, let p’ = B(p, s,a, s’) and p’ = B(p, s, @, s’). Since, by definition, 7,y is
greedy with respect to V},1, we have that

Riz,a) + Y Tols' | 5,)p(0) Vi1 (s, 1) < Rlz,@) + Y To(s" | 5,@)p(0) Vier (', 7))
6,s’ 0,s
By assumption, we have that
Vi ((s,07) =€ Vi ((8,0) Vi ((8,0) < Vil (87, 9) + &
Applying both bounds to the above yields
Riz,a)+)_ To(s' | 5,a)p(0) (Vi1 ((s'9)—e) < Rz, @)+ To(s'| s, @)p(8) (Vi (s, ) +e).
6,s’ 9,s’

Consequently, we have that
'Ma@—R@awak+Zp }jwﬂ N I[To(s' | s,@) = To(s' | 5,a)].

From this, it follows that

_ 7Thv — * _ Y/ TR,V
v loe = max [V (2) = V™ (2)
_ * _ Th,V —
- {Lnéajf'( ‘Qh(x7 a) Qh (‘T7 CL)|
— max |R(z,a) - R(z,a )+ 3P0 [Tole' | 5.0V () = Tals sV (8, 7)] |

<2a+max|2p Zns [5,@) [Viea (5 9) = Vit (0, 5))] |

<2+ [|Vi = Vit ” V||oo

<2(H—-h+1).

where the last inequality follows by iterating the same procedure for the second term in the penultimate
inequality across the remaining H — h timesteps. O

D.3 Proof of Proposition 3

Proposition 3. Let 7@7 ,, denote the greedy policy with respect to Vq; ha1- Then,

Vit = Voo < A8(H — h)(H — b+ 1)2.

Proof. Since, for any x € X, ¢(x) differs only in the epistemic state, the proof follows by realizing
that the ¢ term of Proposition 2 is established by Proposition 1. Namely,

T b
Vi =V,

o S 2(H — b+ 1) max Vi () — Vi (6(2)| < 46(H — h)(H — h+1)?
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