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Abstract

The quintessential model-based reinforcement-learning agent iteratively refines
its estimates or prior beliefs about the true underlying model of the environment.
Recent empirical successes in model-based reinforcement learning with function
approximation, however, eschew the true model in favor of a surrogate that, while
ignoring various facets of the environment, still facilitates effective planning over
behaviors. Recently formalized as the value equivalence principle, this algorithmic
technique is perhaps unavoidable as real-world reinforcement learning demands
consideration of a simple, computationally-bounded agent interacting with an over-
whelmingly complex environment, whose underlying dynamics likely exceed the
agent’s capacity for representation. In this work, we consider the scenario where
agent limitations may entirely preclude identifying an exactly value-equivalent
model, immediately giving rise to a trade-off between identifying a model that
is simple enough to learn while only incurring bounded sub-optimality. To ad-
dress this problem, we introduce an algorithm that, using rate-distortion theory,
iteratively computes an approximately-value-equivalent, lossy compression of the
environment which an agent may feasibly target in lieu of the true model. We
prove an information-theoretic, Bayesian regret bound for our algorithm that holds
for any finite-horizon, episodic sequential decision-making problem. Crucially,
our regret bound can be expressed in one of two possible forms, providing a per-
formance guarantee for finding either the simplest model that achieves a desired
sub-optimality gap or, alternatively, the best model given a limit on agent capacity.

1 Introduction

A central challenge of the reinforcement-learning problem [154, 87] is exploration, where a sequential
decision-making agent must judiciously balance exploitation of knowledge accumulated thus far
against the need to further acquire information for optimal long-term performance. Historically,
provably-efficient reinforcement-learning algorithms [91, 35, 90, 20, 23, 151, 81, 121, 45, 120, 22,
46, 10, 85, 168, 56, 105] have often relied upon one of two possible mechanisms for addressing
the exploration challenge in a principled manner: optimism in the face of uncertainty or posterior
sampling. Briefly, methods in the former category begin with optimistically-biased value estimates
for all state-action pairs; an agent acting greedily with respect to these estimates will be incentivized
to visit all state-action pairs a sufficient number of times until this bias dissipates and the agent
is left with an accurate estimate of the value function for deriving optimal behavior. In contrast,
posterior-sampling methods primarily operate based on Thompson sampling [156, 141] whereby the
agent begins with a prior belief over the Markov Decision Process (MDP) with which it is interacting
and acts optimally with respect to a single sample drawn from these beliefs. The resulting experience
sampled from the true environment allows the agent to derive a corresponding posterior distribution
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and this Posterior Sampling for Reinforcement Learning (PSRL) [152] algorithm proceeds iteratively
in this manner, eventually arriving at a posterior sharply concentrated around the true environment
MDP. While both paradigms have laid down solid theoretical foundations for provably-efficient
reinforcement learning, a line of work has demonstrated how posterior-sampling methods can be
more favorable both in theory and in practice [121–123, 120, 114, 125, 63].

While existing analyses of reinforcement-learning algorithms have largely focused on providing
guarantees for learning optimal solutions, real-world reinforcement learning demands consideration
for a computationally-bounded agent interacting with an overwhelmingly complex environment [105].
A simplified view of this notion can be succinctly depicted in the multi-armed bandit setting [97, 38,
100]; as the number of arms increases, a Thompson sampling agent’s relentless pursuit of the optimal
arm will lead to large regret [138, 139]. On the other hand, one might simply settle for the first
ε-optimal arm found, for some ε > 0, which may be identified in far fewer time periods. The goal of
this work is to augment PSRL so as to accommodate these satisficing solutions in addition to optimal
ones, paralleling existing work for satisficing in multi-armed bandit problems [140, 139, 15, 16]. To
help elucidate the utility of satisficing solutions in the reinforcement-learning setting, we offer the
following illustrative example:
Example 1 (A Multi-Resolution MDP). For a large but finite N ∈ N, consider a sequence of MDPs,
{Mn}n∈[N ], which all share a common action space A but vary in state space Sn, reward function,
and transition function. Moreover, for each n ∈ [N ], the rewards of the nth MDP are bounded in
the interval [0, 1

n ]. An agent is confronted with the resulting product MDP, M, defined on the state
space S1 × . . . × SN with action space A and rewards summed across the N constituent reward
functions. The transition function is defined such that each action a ∈ A is executed across all N
MDPs simultaneously and the resulting individual transitions are combined into a transition of M.

Example 1 presents a simple scenario where, as N ↑ ∞, a complex environment retains a wealth of
information and yet, due to the scale of N and the boundedness of rewards for each constituent MDP
Mn, only a subset of that information is within the agent’s reach or even necessary for producing
reasonably competent behavior. Despite this fact, PSRL will persistently act to fully identify the
transition and reward structure of all {Mn}n∈[N ], for any value of N . Without knowing which MDPs
are more important a priori and even as data accumulates during learning, PSRL is unable to forego
learning granular components of M, eventually accumulating optimal reward at the cost of more time.
Intuitively, however, one might anticipate that there exists a value M ≪ N such that learning the
subsequence of MDPs {Mn}n∈[M ] in fewer time periods is sufficient for achieving a desired degree
of sub-optimality, since the rewards of the remaining MDPs {Mn}n>M make suitably negligible
contributions to the overall rewards of M. Alternatively, for a computationally-bounded decision
maker, the agent’s resource limitations ought to translate into a value C ≪ N such that {Mn}n∈[C]

is feasible and learning this subsequence is the best possible outcome under the agent capacity
constraints. In this work, we introduce an algorithm that, in a purely data-driven and automated
fashion, implicitly identifies such a value M or C to facilitate tractable, near-optimal learning in what
may otherwise be an intractable problem. Following Arumugam and Van Roy [15], a key tool for
defining a notion of satisficing in reinforcement learning will be rate-distortion theory [146, 25].

The paper proceeds as follows: we introduce our problem formulation in Section 3, present our
generalization of PSRL in Section 4, and provide a complementary regret analysis in Section 5. Due
to space constraints, technical proofs, an overview of related work, and discussion of our results in a
broader context are relegated to the appendix.

2 Preliminaries

In this section, we provide brief background on information theory and details on our notation. All
random variables are defined on a probability space (Ω,F ,P). For any random variable X : Ω → X
taking values on the measurable space (X ,X), we use σ(X) ≜ {X−1(A) | A ∈ X} ⊆ F to
denote the σ-algebra generated by X . For any natural number N ∈ N, we denote the index set as
[N ] ≜ {1, 2, . . . , N}. For any arbitrary set X , ∆(X ) denotes the set of all probability distributions
with support on X . For any two arbitrary sets X and Y , we denote the class of all (measurable)
functions mapping from X to Y as {X → Y} ≜ {f | f : X → Y}. While our exposition throughout
the paper will consistently refer to bits of information, it will be useful for the purposes of analysis
that all logarithms be in base e.
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2.1 Information Theory

Here we introduce various concepts in probability theory and information theory used throughout
this paper. We encourage readers to consult [41, 71, 129, 59] for more background.

We define the mutual information between any two random variables X,Y through the Kullback-
Leibler (KL) divergence:

I(X;Y ) = DKL(P((X,Y ) ∈ ·) || P(X ∈ ·)×P(Y ∈ ·)) DKL(P || Q) =

{∫
log

(
dP
dQ

)
dP P ≪ Q

+∞ P ̸≪ Q
,

where P and Q are both probability measures on the same measurable space and dP
dQ denotes the

Radon-Nikodym derivative of P with respect to Q. An analogous definition of conditional mutual
information holds through the expected KL-divergence for any three random variables X,Y, Z:

I(X;Y | Z) = E [DKL(P((X,Y ) ∈ · | Z) || P(X ∈ · | Z)× P(Y ∈ · | Z))] .

With these definitions in hand, we may define the entropy and conditional entropy for any two random
variables X,Y as

H(X) = I(X;X) H(Y | X) = H(Y )− I(X;Y ).

This yields the following identities for mutual information and conditional mutual information for
any three arbitrary random variables X , Y , and Z:

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y |X), I(X;Y |Z) = H(X|Z)−H(X | Y,Z) = H(Y |Z)−H(Y |X,Z).

Through the chain rule of the KL-divergence and the fact that DKL(P || P ) = 0 for any probability
measure P , we obtain another equivalent definition of mutual information,

I(X;Y ) = E [DKL(P(Y ∈ · | X) || P(Y ∈ ·))] ,

as well as the chain rule of mutual information: I(X;Y1, . . . , Yn) =
n∑

i=1

I(X;Yi | Y1, . . . , Yi−1).

Finally, for any three random variables X , Y , and Z which form the Markov chain X → Y → Z,
we have the following data-processing inequality: I(X;Z) ≤ I(X;Y ).

3 Problem Formulation

We formulate a sequential decision-making problem as a finite-horizon, episodic Markov Decision
Process (MDP) [24, 130] defined by M = ⟨S,A,R, T , β,H⟩. Here S denotes a set of states, A is a
set of actions, R : S ×A → [0, 1] is a deterministic reward function providing evaluative feedback
signals (in the unit interval) to the agent, T : S × A → ∆(S) is a transition function prescribing
distributions over next states, β ∈ ∆(S) is an initial state distribution, and H ∈ N is the maximum
episode length or horizon.

As is standard in Bayesian reinforcement learning [70], neither the transition function nor the reward
function are known to the agent and, consequently, both are treated as random variables. Since
all other components of the MDP are thought of as known a priori, the randomness in the model
(R, T ) fully accounts for the randomness in M, which is also a random variable. We denote by
M⋆ the true MDP with model (R⋆, T ⋆) that the agent interacts with and attempts to solve over the
course of K episodes. Within each episode, the agent acts for exactly H steps beginning with an
initial state s1 ∼ β. For each h ∈ [H], the agent observes the current state sh ∈ S, selects action
ah ∼ πh(· | sh) ∈ A, enjoys a reward rh = R(sh, ah) ∈ [0, 1], and transitions to the next state
sh+1 ∼ T (· | sh, ah) ∈ S.

A stationary, stochastic policy for timestep h ∈ [H], πh : S → ∆(A), encodes a pattern of behavior
mapping individual states to distributions over possible actions. Letting {S → ∆(A)} denote the class
of all stationary, stochastic policies, a non-stationary policy π = (π1, . . . , πH) ∈ {S → ∆(A)}H
is a collection of exactly H stationary, stochastic policies whose overall performance in any MDP
M at timestep h ∈ [H] when starting at state s ∈ S and taking action a ∈ A is assessed by its

associated action-value function Qπ
M,h(s, a) = E

[
H∑

h′=h

R(sh′ , ah′)
∣∣ sh = s, ah = a

]
, where the
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expectation integrates over randomness in the action selections and transition dynamics. Taking
the corresponding value function as V π

M,h(s) = Ea∼πh(·|s)

[
Qπ

M,h(s, a)
]
, we define the optimal

policy π⋆ = (π⋆
1 , π

⋆
2 , . . . , π

⋆
H) as achieving supremal value V ⋆

M,h(s) = sup
π∈{S→∆(A)}H

V π
M,h(s) for

all s ∈ S, h ∈ [H]. For brevity, we will write any value function V ∈ {S → R} without its
argument to implicitly integrate over randomness in the initial state: V = Es1∼β(·) [V (s1)]. We
let τk = (s

(k)
1 , a

(k)
1 , r

(k)
1 , . . . , s

(k)
H , a

(k)
H , r

(k)
H , s

(k)
H+1) be the random variable denoting the trajectory

experienced by the agent in the kth episode. Meanwhile, Hk = {τ1, τ2, . . . , τk−1} ∈ Hk is the
random variable representing the entire history of the agent’s interaction within the environment at
the start of the kth episode; the sequence of history random variables {Hk}k∈[K] induce and, by
definition, are adapted to the filtration {σ(Hk)}k∈[K] of (Ω,F). We call attention to the fact that
we have yet to make any further restrictions on the state-action space S × A, such as finiteness;
notably, the main results of this paper are not limited to tabular MDPs. As mentioned by Lattimore
and Szepesvári [100] (also as Proposition 7.28 of Bertsekas and Shreve [28]), the Ionescu-Tulcea
Theorem [80] ensures the existence of a probability space upon which τk and Hk are well-defined
random variables for all episodes k ∈ [K].

Abstractly, a reinforcement-learning algorithm is a sequence of non-stationary policies
(π(1), . . . , π(K)) where for each episode k ∈ [K], π(k) : Hk → {S → ∆(A)}H is a function
of the current history Hk. We define the regret of a reinforcement-learning algorithm over K episodes
as

REGRET(K,π(1), . . . , π(K),M⋆) =

K∑
k=1

∆k ∆k ≜ V ⋆
M⋆,1 − V π(k)

M⋆,1,

where ∆k denotes the episodic regret or regret incurred during the kth episode with respect to the true
MDP M⋆. An agent’s initial uncertainty in the (unknown) true MDP M⋆ is reflected by an arbitrary
prior distribution P(M⋆ ∈ · | H1). Since the regret is a random variable due to our uncertainty in
M⋆, we integrate over this randomness to arrive at the Bayesian regret:

BAYESREGRET(K,π(1), . . . , π(K)) = E
[
REGRET(K,π(1), . . . , π(K),M⋆)

]
.

Broadly speaking, our goal is to design a provably-efficient reinforcement-learning algorithm that
incurs bounded Bayesian regret.

Throughout the paper, we will denote the entropy and conditional entropy conditioned upon a specific
realization of an agent’s history Hk, for some episode k ∈ [K], as Hk(X) ≜ H(X | Hk = Hk)

and Hk(X | Y ) ≜ Hk(X | Y,Hk = Hk), for two arbitrary random variables X and Y . This
notation will also apply analogously to the mutual information Ik(X;Y ) ≜ I(X;Y | Hk = Hk) =
Hk(X) − Hk(X | Y ) = Hk(Y ) − Hk(Y | X), as well as the conditional mutual information
Ik(X;Y | Z) ≜ I(X;Y | Hk = Hk, Z), given an arbitrary third random variable, Z. Note that their
dependence on the realization of random history Hk makes both Ik(X;Y ) and Ik(X;Y | Z) random
variables themselves. The traditional notion of conditional mutual information given the random
variable Hk arises by integrating over this randomness:

E [Ik(X;Y )] = I(X;Y | Hk) E [Ik(X;Y | Z)] = I(X;Y | Hk, Z).

Additionally, we will also adopt a similar notation to express a conditional expectation given the
random history Hk: Ek [X] ≜ E [X|Hk] .

4 Satisficing Through Posterior Sampling

4.1 Rate-Distortion Theory

We begin with a brief, high-level overview of rate-distortion theory [146, 25] and encourage readers
to consult [41] for more details and [26] for a survey of advances in rate-distortion theory towards
solving the lossy source coding problem in information theory. A lossy compression problem
consumes as input a fixed information source P(X ∈ ·) and a measurable distortion function
d : X × Z → R≥0 which quantifies the loss of fidelity by using Z in place of X . Then, for any
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D ∈ R≥0, the rate-distortion function quantifies the fundamental limit of lossy compression as

R(D) = inf
Z∈Λ(D)

I(X;Z) Λ(D) ≜ {Z : Ω → Z | E [d(X,Z)] ≤ D},

where the infimum is taken over all random variables Z that incur bounded expected distortion,
E [d(X,Z)] ≤ D. Naturally, R(D) represents the minimum number of bits of information that must
be retained from X in order to achieve this bounded expected loss of fidelity1. Throughout the paper,
various facts of the rate-distortion function will be referenced as needed. For now, we simply note
that, in keeping with the problem formulation of the previous section which does not automatically
assume discrete random variables, the rate-distortion function is well-defined for abstract information
source and channel output random variables [43].

Just as in past work that studies satisficing in multi-armed bandit problems [138, 139, 15], we will
use rate-distortion theory to formalize and identify the best simplified MDP M̃k that the agent will
attempt to learn over the course of each episode k ∈ [K]. The dependence on the particular episode
comes from the fact that this lossy compression mechanism or channel will treat the agent’s current
beliefs over the true MDP P(M⋆ ∈ · | Hk) as the information source to be compressed.

4.2 The Value Equivalence Principle

As outlined in the previous section, the second input for a well-specified lossy-compression problem is
a distortion function prescribing non-negative real values to realizations of the information source and
channel output random variables (M⋆,M̃) that quantify the loss of fidelity incurred by using M̃ in
lieu of M⋆. To define this function, we will leverage an approximate notion of value equivalence [72,
73]. For any arbitrary MDP M with model (R, T ) and any stationary, stochastic policy π : S →
∆(A), define the Bellman operator Bπ

M : {S → R} → {S → R} as follows:

Bπ
MV (s) ≜ Ea∼π(·|s)

[
R(s, a) + Es′∼T (·|s,a) [V (s′)]

]
, ∀s ∈ S.

The Bellman operator is a foundational tool in dynamic-programming approaches to reinforcement
learning [29] and gives rise to the classic Bellman equation: for any MDP M = ⟨S,A,R, T , β,H⟩
and any non-stationary policy π = (π1, . . . , πH), the value functions induced by π satisfy V π

M,h(s) =

Bπh

MV π
M,h+1(s), for all h ∈ [H] and with V π

M,H+1(s) = 0, ∀s ∈ S. For any two MDPs M =

⟨S,A,R, T , β,H⟩ and M̂ = ⟨S,A, R̂, T̂ , β,H⟩, Grimm et al. [72] define a notion of equivalence
between them despite their differing models. For any policy class Π ⊆ {S → ∆(A)} and value
function class V ⊆ {S → R}, M and M̂ are value equivalent with respect to Π and V if and only if
Bπ
MV = Bπ

M̂
V , ∀π ∈ Π, V ∈ V. In words, two different models are deemed value equivalent if they

induce identical Bellman updates under any pair of policy and value function from Π×V . Grimm et al.
[72] prove that when Π = {S → ∆(A)} and V = {S → R}, the set of all exactly value-equivalent
models is a singleton set containing only the true model of the environment. The key insight behind
value equivalence, however, is that practical model-based reinforcement-learning algorithms need not
be concerned with modeling every granular detail of the underlying environment and may, in fact,
stand to benefit by optimizing an alternative criterion besides the traditional maximum-likelihood
objective [147, 66, 116, 17, 65, 57, 1, 44, 21, 144, 110, 113, 161]. Indeed, by restricting focus to
decreasing subsets of policies Π ⊂ {S → ∆(A)} and value functions V ⊂ {S → R}, the space of
exactly value-equivalent models is monotonically increasing.

For brevity, let R ≜ {S × A → [0, 1]} and T ≜ {S × A → ∆(S)} denote the classes of all
reward functions and transition functions, respectively. Recall that, with ⟨S,A, β,H⟩ all known, the
uncertainty in a random MDP M is entirely driven by its model (R, T ) such that we may think of
the support of M⋆ as supp(M⋆) = M ≜ R× T. We define a distortion function on pairs of MDPs
d : M×M → R≥0 for any Π ⊆ {S → ∆(A)}, V ⊆ {S → R} as

dΠ,V(M,M̂) = sup
π∈Π
V ∈V

||Bπ
MV − Bπ

M̂V ||2∞ = sup
π∈Π
V ∈V

(
sup
s∈S

|Bπ
MV (s)− Bπ

M̂V (s)|
)2

.

In words, dΠ,V is the supremal squared Bellman error between MDPs M and M̂ across all states
s ∈ S with respect to the policy class Π and value function class V .

1With a slight abuse of notation, we overload R.
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4.3 Value-Equivalent Sampling for Reinforcement Learning

By virtue of the previous two sections, we are now in a position to define the lossy compression
problem that characterizes a MDP M̃ that the agent will aspire to learn in each episode k ∈ [K]
instead of the true MDP M⋆. For any Π ⊆ {S → ∆(A)}; V ⊆ {S → R}; k ∈ [K]; and D ≥ 0, we
define the rate-distortion function

RΠ,V
k (D) = inf

M̃∈Λk(D)
Ik(M⋆;M̃), Λk(D) ≜ {M̃ : Ω → M | Ek[dΠ,V(M⋆,M̃)] ≤ D}. (1)

This rate-distortion function characterizes the fundamental limit of MDP compression under our
chosen distortion measure resulting in a channel that retains the minimum amount of information from
the true MDP M⋆ while yielding an approximately value-equivalent MDP in expectation. Observe
that this distortion constraint is a notion of approximate value equivalence which collapses to the
exact value equivalence of Grimm et al. [72] as D → 0. Meanwhile, as D → ∞, we accommodate a
more aggressive compression of the true MDP M⋆ resulting in less faithful Bellman updates.

Algorithm 1 Posterior Sampling for Re-
inforcement Learning (PSRL) [152]

Input: Prior P(M⋆ ∈ · | H1)
for k ∈ [K] do

Sample Mk ∼ P(M⋆ ∈ · | Hk)
Get optimal policy π(k) = π⋆

Mk

Execute π(k) and get trajectory τk
Update history Hk+1 = Hk ∪ τk
Induce posterior P(M⋆ ∈ · | Hk+1)

end for

Algorithm 2 Value-equivalent Sampling for Reinforce-
ment Learning (VSRL)

Input: Prior P(M⋆ ∈ · | H1), Threshold D ∈ R≥0,
Distortion function dΠ,V : M×M → R≥0

for k ∈ [K] do
Compute M̃k achieving RΠ,V

k (D) limit (Equation 1)
Sample MDP M⋆ ∼ P(M⋆ ∈ · | Hk)

Sample compression Mk ∼ P(M̃k ∈ · | M⋆ = M⋆)
Compute optimal policy π(k) = π⋆

Mk

Execute π(k) and observe trajectory τk
Update history Hk+1 = Hk ∪ τk
Induce posterior P(M⋆ ∈ · | Hk+1)

end for

A standard algorithm for our problem setting is widely known as Posterior Sampling for Reinforce-
ment Learning (PSRL) [152, 120], which we present as Algorithm 1, while our Value-equivalent
Sampling for Reinforcement Learning (VSRL) is given as Algorithm 2. The key distinction between
them is that, at each episode k ∈ [K], the latter takes the posterior sample M⋆ ∼ P(M⋆ ∈ · | Hk)
and passes it through the channel that achieves the rate-distortion limit (Equation 1) at this episode to
get the Mk whose optimal policy is executed in the environment.

The core impetus for this work is to recognize that, for complex environments, pursuit of the exact
MDP M⋆ (as in PSRL) may be an entirely infeasible goal. Consider a MDP that represents control
of a real-world, physical system; learning a transition function of the associated environment, at some
level, demands that the agent internalize the laws of physics and motion with near-perfect accuracy.
More formally, identifying M⋆ demands the agent obtain exactly H1(M⋆) bits of information
from the environment which, under an uninformative prior, may either be prohibitively large by
far exceeding the agent’s capacity constraints or be simply impractical under time and resource
constraints.

As a remedy for this problem, we embrace the idea of being “sufficiently satisfying” or satisficing [148,
140, 138, 139, 15, 16]; as succinctly stated by Herbert A. Simon during his 1978 Nobel Memorial
Lecture, “decision makers can satisfice either by finding optimum solutions for a simplified world,
or by finding satisfactory solutions for a more realistic world.” Rather than spend an inordinate
amount of time trying to recover an optimum solution to the true environment, we will instead
design an algorithm that pursues optimum solutions for a sequence of simplified environments.
In the next section, our analysis demonstrates that finding such optimum solutions for simplified
worlds ultimately acts as a mechanism for achieving a satisfactory solution for the realistic, complex
world. Naturally, the loss of fidelity between the simplified and true environments translates into a
fixed amount of regret that an agent designer consciously and willingly accepts for two reasons: (1)
they expect a reduction in the amount of time, data, and bits of information needed to identify the
simplified environment and (2) in tasks where the environment encodes irrelevant information and
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exact knowledge is not needed to achieve optimal behavior [66, 72, 73, 161], this worst-case error
term may be negligible anyways while still maintaining greater efficiency than traditional PSRL.

Recalling Example 1 that revolves around a particular sequence of MDPs, {Mn}n∈[N ], we note
that as the distortion threshold D increases, the significance of MDPs in the sequence indexed by
larger values of n ∈ [N ] rapidly diminishes. As D ↑ ∞, the lossy compression M̃k needn’t convey
information about any of the MDPs in {Mn}n∈[N ]. Conversely, at D = 0, a VSRL agent must
necessarily obtain enough information about the entire sequence so as to facilitate planning over Π
and V . In between, however, the agent need only concern itself with a particular subsequence of
{Mn}n∈[N ] while the remaining MDPs can be ignored due to their negligible contribution to overall
value and, therefore, expected distortion under dΠ,V .

5 Regret Analysis

In this section, we offer an information-theoretic analysis of VSRL (Algorithm 2) before refining our
regret bounds to the tabular setting. We conclude by highlighting how our performance guarantees can
be expressed via a notion of agent capacity that is considerate of real-world reinforcement learning.

5.1 An Information-Theoretic Bayesian Regret Bound

To establish a Bayesian regret bound for VSRL we first require a regret decomposition that ac-
knowledges the agent’s new objective of identifying an approximately value-equivalent MDP in
each episode, M̃k, rather than the true MDP M⋆. Crucially, this regret decomposition leverages the
precise form of our distortion function dΠ,V(M⋆,M̃k).
Theorem 1. Take any Π ⊇ {S → A}, any V ⊇ {V π | π ∈ ΠH}, and fix any D ≥ 0.
For each episode k ∈ [K], let M̃k be any MDP that achieves the rate-distortion limit of
RΠ,V

k (D) with information source P(M⋆ ∈ · | Hk) and distortion function dΠ,V . Then,

BAYESREGRET(K,π(1), . . . , π(K)) ≤ E
[

K∑
k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
+ 2KH

√
D.

Theorem 1 shows how the Bayesian regret incurred by VSRL can be separated into an error term
the agent must pay for learning a simplified MDP M̃k, rather than M⋆, and the Bayesian regret
incurred while trying to learn M̃k. This first term mirrors the satisficing regret of Russo and Van Roy
[138, 139] for multi-armed bandits where the performance of the agent in the kth episode is being
measured with respect to a compressed MDP M̃k, rather than the true MDP M⋆. While further
discussion on the choices of Π and V is provided later in this section, we simply note that the
conditions placed upon them in Theorem 1 are an artifact of VSRL only executing optimal policies in
each time period h ∈ [H] which, under the assumptions of our problem formulation, are deterministic.

The remainder of this section is devoted to an analysis for establishing an information-theoretic bound
on the satisficing regret term of Theorem 1. A central tool of our analysis will be the information
ratio [136, 137] at the kth episode:

Γk ≜
Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]2
Ik(M̃k; τk,Mk)

∀k ∈ [K].

In words, the information ratio is the ratio between squared expected regret in the kth episode with
respect to M̃k and the information gained about M̃k in the kth episode by sampling MDP Mk

and observing trajectory τk, given the current history Hk. Numerous prior works have leveraged
similar or generalized types of information ratios for analyzing multi-armed bandit problems [135–
139, 54, 99, 169, 36, 15, 98] as well as reinforcement-learning problems [104]; in comparison to the
latter, we simply note that our analysis bears stronger resemblance to those in multi-armed bandits by
not constructing confidence sets over MDPs [121, 120, 104], avoiding a restricted focus to tabular
problems. That said, our results are contingent upon the existence of a uniform upper bound to the
information ratios across all episodes, a non-trivial result [78] that we leave to future work.

Through our information-ratio analysis, we obtain the following information-theoretic bound on
satisficing Bayesian regret:
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Theorem 2. If Γk ≤ Γ, for all k ∈ [K], then E
[

K∑
k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
≤

√
ΓKRΠ,V

1 (D).

An immediate consequence of the preceding theorems is the following corollary which establishes
our main result, an information-theoretic Bayesian regret bound for VSRL. We omit the proof as it
follows directly from applying Theorems 1 and 2 in sequence.
Corollary 1. Take any Π ⊇ {S → A}, any V ⊇ {V π | π ∈ ΠH}, and fix any D > 0. For
any prior distribution P(M⋆ ∈ · | H1), if Γk ≤ Γ for all k ∈ [K], then VSRL (Algorithm 2) has

BAYESREGRET(K,π(1), . . . , π(K)) ≤
√
ΓKRΠ,V

1 (D) + 2KH
√
D.

Once again we recall that, since the rate-distortion function is well-defined for arbitrary source and
channel output random variables defined on abstract alphabets [43], the Bayesian regret bound of
Corollary 1 holds for any finite-horizon, episodic MDP, extending beyond past analyses of PSRL
constrained only to tabular MDPs. We defer a discussion of practical considerations for implementing
VSRL to the appendix.

At this point, we call attention to the parameterization of our lossy compression problem by a
particular policy class Π and value function class V , whose dependence we inherit from the value
equivalence principle [72]. The next result clarifies how the performance of VSRL is affected by
fluctuations in these classes via a dominance relationship [150] between the induced distortion
functions.
Lemma 1. For any two Π,Π′ and any V,V ′ such that Π′ ⊆ Π ⊆ {S → ∆(A)} and V ′ ⊆ V ⊆
{S → R}, we have RΠ,V

k (D) ≥ RΠ′,V′

k (D), ∀k ∈ [K], D > 0.

Property 3 of Grimm et al. [72] highlights how the set of value-equivalent MDPs grows as the policy
and value function classes shrink. Lemma 1 provides an intuitive, information-theoretic counterpart
to their result where, as the sets of policies and value functions over which models will be assessed
diminish, an agent may naturally compress more aggressively and throw away larger quantities of
bits from each source distribution over the true MDP M⋆.

Since a compressed MDP M̃k that achieves the rate-distortion limit has expected distortion bounded
by D, one may wonder how the probability of not recovering an approximately-value-equivalent
MDP scales as D ↑ ∞. To that end, we conclude this section with a final result that brings clarity to
this via a generalization [60] of Fano’s inequality [64]. We leave investigation of other generalizations
of Fano’s inequality that might yield similarly interesting results to future work [160, 8].
Lemma 2. Take any Π ⊆ {S → ∆(A)} and V ⊆ {S → R}. For any D ≥ 0 and any k ∈ [K],
define δ = sup

M̂∈M

P(dΠ,V(M⋆, M̂) ≤ D | Hk). Then,

sup
M̃∈Λk(D)

P(dΠ,V(M⋆,M̃) > D | Hk) ≥ 1−
RΠ,V

k (D) + log(2)

log
(
1
δ

) .

For any episode k ∈ [K], the left-hand side of the inequality in Lemma 2 denotes the worst-case
error probability of sampling a compressed MDP M̃ that is not approximately-value-equivalent to
M⋆. The right-hand side conveys that, in order to avoid such an error with reasonable probability,
one requires a setting of D < ∞ such that RΠ,V

k (D) ≈ log
(
1
δ

)
.

5.2 Specializing to Tabular MDPs

While the preceding subsection constitutes the main contribution of this paper, the presence of
information-theoretic terms makes it difficult to compare our guarantees to those obtained in prior
work, which typically focuses on the tabular setting. To help remedy this, we offer the following
theorem which restricts focus to the case where the agent pursues an exactly value-equivalent model
of the tabular environment. Notably, the results of this section still retain a dependence on a uniform
upper bound to the information ratio whose exact form is a result left to future work.
Theorem 3. Take any Π ⊇ {S → A}, any V ⊇ {V π | π ∈ ΠH}, and let D = 0. For any prior
distribution P(M⋆ ∈ · | H1) over tabular MDPs, if Γk ≤ Γ for all k ∈ [K], then VSRL (Algorithm

2) has BAYESREGRET(K,π(1), . . . , π(K)) ≤ O
(
|S|

√
Γ|A|K

)
.
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An immediate observation is that the Bayesian regret bound of Theorem 3 matches the dependence
on the number of states, |S|, obtained in the first (weaker) guarantee established for PSRL by Osband
et al. [121]; we suspect that this guarantee for VSRL is unimprovable without further distributional
assumptions [120, 119]. As an alternative, we contemplate how a change in the distortion measure
used by VSRL might incur an improved regret bound when specialized to the tabular setting.

Specifically, notice that the only piece of the VSRL analysis tethered to the particular form of
the distortion function dΠ,V(M,M̂) is Theorem 1, while all other components remain agnostic
to the precise criterion for assessing the loss of fidelity between original and compressed MDPs.
Consequently, there is potential for a modified distortion function to offer an improved regret analysis
relative to Theorem 3. Rather than concerning ourselves with planning over multiple behaviors, we
consider a distortion function based solely on the optimal action-value functions:

dQ⋆(M,M̂) = sup
h∈[H]

||Q⋆
M,h −Q⋆

M̂,h
||2∞ = sup

h∈[H]

sup
(s,a)∈S×A

|Q⋆
M,h(s, a)−Q⋆

M̂,h
(s, a)|2.

We use RQ⋆

k (D) to denote the rate-distortion function under this new measure of distortion,
dQ⋆(M,M̂). In order for this new distortion function to be compatible with VSRL, we require an
analogue to the regret decomposition of Theorem 1.

Theorem 4. Fix any D ≥ 0 and, for each episode k ∈ [K], let M̃k be any MDP that achieves the rate-
distortion limit of RQ⋆

k (D) with information source P(M⋆ ∈ · | Hk) and distortion function dQ⋆ .

Then, BAYESREGRET(K,π(1), . . . , π(K)) ≤ E
[

K∑
k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
+ 2K(H + 1)

√
D.

With this regret decomposition in hand, we may recover the analogue to Corollary 1, whose proof is
immediate and, therefore, omitted.
Corollary 2. Fix any D > 0. For any prior distribution P(M⋆ ∈ · | H1), if Γk ≤ Γ for all k ∈ [K],
then VSRL (Algorithm 2) with distortion function dQ⋆ has BAYESREGRET(K,π(1), . . . , π(K)) ≤√
ΓKRQ⋆

1 (D) + 2K(H + 1)
√
D.

As illustrated by the following lemma, the significance of this change in distortion measure from dΠ,V
to dQ⋆ is that the optimal action-value functions may now act as an information bottleneck [158]
between the original MDP M⋆ and compressed MDP M̃k.

Lemma 3. For each episode k ∈ [K] and for D = 0, let M̃k be any MDP that achieves the
rate-distortion limit of RQ⋆

k (D) with information source P(M⋆ ∈ · | Hk) and distortion function
dQ⋆ . Then, we have the Markov chain M⋆ → Q⋆

M⋆ → M̃k, where Q⋆
M⋆ = {Q⋆

M⋆,h}h∈[H] is the
collection of random variables denoting the optimal action-value functions of M⋆.

Lemma 3, through the data-processing inequality, immediately leads us to an analogue of Theorem 3
that matches the dependence on |S| in the best known Bayesian regret bound for PSRL [120].

Theorem 5. For D = 0 and any prior distribution P(M⋆ ∈ · | H1) over tabular MDPs, if Γk ≤ Γ
for all k ∈ [K], then VSRL with distortion function dQ⋆ has BAYESREGRET(K,π(1), . . . , π(K)) ≤

Õ
(√

Γ|S||A|KH

)
.

Ultimately, Theorem 5 confirms that while there is great flexibility in the original definition of value
equivalence to support planning across multiple policies and value functions, focusing on optimal
value functions gives rise to more efficient learning. Moreover, comparing the result with the PSRL
regret bound of Osband and Van Roy [120] for tabular MDPs, this suggests an achievable uniform
upper bound to the information ratio as Γ ≲ H2, where the ≲ accounts for numerical constants and
logarithmic factors.

5.3 Capacity-Sensitive Performance Guarantees

We recognize that the information-theoretic regret bounds of the previous two sections, like many other
guarantees for provably-efficient reinforcement learning before them, implicitly and unrealistically
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assume that an agent is of unbounded capacity and may pursue any approximately-value-equivalent
model under a given distortion threshold D. In the context of real-world reinforcement learning [62,
105], however, fundamental limits on computational resources and time leave an agent designer
with a bounded agent to be deployed within an overwhelmingly complex environment. As such,
this designer may seldom be in a position to dictate an ideal or desired sub-optimality threshold D,
but rather must make do with a known constraint on agent capacity; guarantees on sample-efficient
reinforcement learning cognizant of such a fundamental constraint are nascent.

While there are numerous possibilities for how one might choose to formally characterize agent
capacity, we here adopt a fundamental perspective that learning is the process of acquiring information
and so take this capacity to imply the existence of a non-negative real value R ∈ R>0 such that
the agent may only acquire and retain exactly R bits of information. To help contextualize this
notion of agent capacity, we introduce the distortion-rate function [146, 25, 41] which quantifies the
fundamental limit of expected distortion under an information constraint:

DQ⋆

k (R) = inf
M̃∈Υk(R)

Ek

[
dQ⋆(M⋆,M̃)

]
DQ⋆

k (R) = inf
M̃∈Υk(R)

Ek

[
dQ⋆(M⋆,M̃)

]
, (2)

where the infimum is taken over all channels with bounded rate, Υk(R) ≜ {M̃ : Ω → M |
Ik(M⋆;M̃) ≤ R}. In words, given the agent’s current beliefs over the true MDP P(M⋆ ∈ · | Hk),
the infimum of the distortion-rate function is taken over all potential lossy compressions of the
environment that fall within the agent’s capacity constraint of R bits and identifies the one that
preserves the most useful information, as measured by the distortion function. Conveniently, the
rate-distortion function and distortion-rate function are inverses of one another [41] (R(D(R)) = R)
such that we recover the following two capacity-sensitive regret bounds directly from Corollaries 1
and 2 by simply taking the input distortion threshold of VSRL equal to the associated distortion-rate
function in the first episode (D = DΠ,V

1 (R) and D = DQ⋆

1 (R), respectively).
Corollary 3. Take any Π ⊇ {S → A}, any V ⊇ {V π | π ∈ ΠH}, and let R > 0 be the agent
capacity. For any prior distribution P(M⋆ ∈ · | H1), if Γk ≤ Γ for all k ∈ [K], then VSRL
(Algorithm 2) with distortion function dΠ,V has BAYESREGRET(K,π(1), . . . , π(K)) ≤

√
ΓKR +

2KH

√
DΠ,V

1 (R).

Corollary 4. Let R > 0 be the agent capacity. For any prior distribution P(M⋆ ∈ · | H1),
if Γk ≤ Γ for all k ∈ [K], then VSRL (Algorithm 2) with distortion function dQ⋆ has

BAYESREGRET(K,π(1), . . . , π(K)) ≤
√
ΓKR+ 2K(H + 1)

√
DQ⋆

1 (R).

Turning back to Example 1, note how an agent with significantly limited capacity cannot possibly hope
to capture all the granularity contained in the entire MDP sequence {Mn}n∈[N ], for large values of N .
For a capacity of exactly R bits, Corollaries 3 and 4 immediately translate this fundamental limit into
a corresponding performance guarantee, allowing the agent to identify a subsequence {Mn}n∈[C]

for some C ≪ N which only requires gathering R bits of information from the environment.

6 Conclusion

In this paper, we began with a finite-horizon, episodic MDP and considered the ramifications of
a real-world reinforcement-learning scenario wherein the relative complexity of the environment
is so immense that an agent may find itself incapable of perfectly recovering optimal behavior.
An immediate consequence of this reality is the need to strike an appropriate balance between
what is performant and what is achievable. We introduced the VSRL algorithm for incrementally
synthesizing simple and useful approximations of the environment from which an agent might
still recover near-optimal behaviors. Recognizing the information-theoretic nature of this lossy
MDP compression, we provided an analysis of VSRL whose performance guarantees, by virtue of
rate-distortion theory, are twofold. The first set of guarantees ensure VSRL recovers the simplest
compression of the environment which still incurs bounded sub-optimality, as specified by the agent
designer. Alternatively, the second set of guarantees maintain that VSRL finds the best compression
of the environment subject to constraints on agent capacity. Through our general problem formulation
and information-theoretic analysis, both regret bounds hold for any finite-horizon, episodic MDP,
regardless of whether or not the state-action space is finite. That said, the question of how to
practically instantiate VSRL for high-dimensional settings is an open problem left to future work.
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A Related Work

This paper follows suit with a long line of work on provably-efficient reinforcement learning [91,
35, 90, 20, 23, 151, 81, 121, 45, 120, 22, 46, 10, 85, 168, 56, 105]. As previously discussed, these
methods can be categorized based on their use of optimism in the face of uncertainty or posterior
sampling to address the exploration challenge. Notably, methods in the latter category are Bayesian
reinforcement-learning algorithms [70] that, through their use of Thompson sampling [156, 141], are
exclusively concerned with identifying optimal solutions. The notable exception to this statement is
the method of Lu et al. [105], which is based on information-directed sampling [135, 137]; while
their analysis does accommodate other learning targets besides the optimal policy, an agent designer
is responsible for supplying this target to the agent a priori whereas we adaptively compute an
information-theoretically sound target grounded in rate-distortion theory.

In contrast to this class of approaches, optimism-based methods tend to obey PAC-MDP guaran-
tees [90, 151] which, given a fixed parameter ε > 0, offer a high-probability bound on the total
number of timesteps for which the agent’s behavior is worse than ε-sub-optimal. Through this
tolerance parameter ε, an agent designer can express a preference for efficiently identifying a delib-
erately sub-optimal solution; our work can be seen as providing an analogous knob for Bayesian
reinforcement-learning methods that deliberately pursue a satisficing solution while also remaining
competitive with regret guarantees for optimism-based methods [45, 46, 85, 168]. In this way, our
theoretical guarantees are more general than those for PSRL [121, 118, 2, 120, 10]. Importantly,
the nature of our contribution is not to be confused with the PAC-BAMDP framework of Kolter
and Ng [94] which characterizes algorithms that adhere to a high-probability bound on the total
number of sub-optimal timesteps relative to the Bayes-optimal policy [18, 149]. We refer readers
to the work of Ghavamzadeh et al. [70] for a broader survey of Bayesian reinforcement-learning
methods, including those which do not employ posterior sampling [152], but instead entertain other
approximations [51, 52, 163, 39, 12, 74–76] to tractably solve the resulting Bayes-Adaptive Markov
Decision Process (BAMDP) [61], typically while foregoing rigorous theoretical guarantees.

A perhaps third distinct class of provably-efficient reinforcement-learning algorithms [96, 84, 47, 58,
153] proceeds by iteratively selecting an element of a function class (typically denoting a collection
of regressors for either a value function or transition model), inducing a policy from the chosen
function, and then carefully eliminating all hypotheses of the function class that are inconsistent with
the observed data resulting from policy rollouts in the environment. To the extent that one might
be willing to characterize this high-level algorithmic template as an iterative, manual compression
and refinement of the initial function class, our algorithm can be seen as bringing the appropriate
tool of rate-distortion theory to bear on the inherent lossy compression problem and developing the
complementary information-theoretic analysis.

The concept of designing algorithms to learn such near-optimal or satisficing solutions has been
well-studied in the multi-armed bandit setting [38, 100]. Indeed, the need to forego optimizing for
an optimal arm arises naturally in various contexts [37, 92, 134, 142, 53, 27, 164, 32]. A general
study of such satisficing solutions through the lens of information theory was first proposed by Russo
et al. [140], Russo and Van Roy [138, 139] and later extended to develop practical algorithms by
Arumugam and Van Roy [15, 16]. Our work provides the natural, theoretical extension of these
ideas to the full reinforcement-learning setting, leaving investigation of practical instantiations to
future work (see Section B). The algorithm and regret bound we provide bears some resemblance
to the compressed Thompson sampling algorithm of Dong and Van Roy [54] for bandit problems.
Crucially, while the compressive statistic of the environment utilized by their algorithm is computed
once a priori, our algorithm recomputes its learning target in each episode, refining it as the agent’s
knowledge of the true environment accumulates. Similar to these prior works, we leverage rate-
distortion theory [146] as a principled tool for a mathematically-precise characterization of satisficing
solutions. We simply note that our use of rate-distortion theory for reinforcement learning in this
work stands in stark contrast to that of prior work which examines state abstraction in reinforcement
learning [6] or attempts to control the entropy of the resulting policy [157, 133, 145].

We also recognize the connection between this work and prior work at the intersection of information
theory and control theory [166, 108, 109, 33, 155, 95]. These works parallel our setting in their
consideration for an agent that must stabilize a system with limited observational capacity, augmenting
the standard control objective subject to a constraint on the rate of the channel that processes raw
observations; this problem formulation more closely aligns with a partially-observable Markov
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Decision Process [19, 88] or an agent learning with a state abstraction [101, 4, 159]. In contrast, our
work is concerned with an overall limit on the total amount of information an agent may acquire
from the environment and, in turn, how that translates into its selection of a feasible learning target.
That said, we suspect there could be a strong, subtle synergy between these prior works and the
capacity-sensitive performance guarantees for our algorithm (see Section 5.3).

B Discussion

In this section, we outline connections between VSRL and follow-up work to the value equivalence
principle [73], explore opportunities for even further compression through state abstraction [101, 4],
and contemplate potential avenues for how our theory might inform practice.

B.1 Proper Value Equivalence

While the value equivalence principle examines a single application of each Bellman operator, in
follow-up work Grimm et al. [73] introduce the notion of proper value equivalence, which considers
the limit of infinitely many applications or, stated more concisely, the fixed points of the associated
operators. A model M̃ is proper value equivalent if V π

M⋆,h = V π
M̃,h

, ∀π ∈ Π, h ∈ [H]. This
notion allows for a simpler parameterization through the policy class Π alone, without the need for a
complementary value function class V . Conveniently, through Proposition 2 of Grimm et al. [73], it
follows that to obtain the set of proper value equivalent models with respect to Π, one need only find
the set of models that are value equivalent for each π ∈ Π and its induced value function, V π. In
our context, we can establish an approximate version of this by using the distortion function dΠ,V
where V = {V π | π ∈ ΠH} (recall that previous results obeyed the less stringent condition that
V ⊇ {V π | π ∈ ΠH}).

Grimm et al. [73] go on to study proper value equivalence for the set of all deterministic policies,
Π = {S → A} and, through their Corollary 1, show that an optimal policy for any model which is
proper value equivalent to Π is also optimal in the original MDP M⋆. Again, we recall that our prior
guarantees were made under the less restrictive assumption that Π ⊇ {S → A}. Coupling these
insights on proper value equivalence together, we see that when VSRL is run with Π = {S → A}
and V = {V π | π ∈ ΠH}, the agent aims to recover an approximately proper value-equivalent model
of the true environment and, when D = 0, the optimal policy associated with this compressed MDP
will be optimal for M⋆. Finally, through their Proposition 5, Grimm et al. [73] identify the set of all
proper value equivalent models with respect to {S → A} as the largest possible value equivalence
class that is guaranteed to yield optimal performance in the true environment. Meanwhile, our Lemma
1 again establishes the information-theoretic analogue of this claim; namely, that VSRL configured
to learn a model from this largest value equivalence class requires the fewest bits of information
from the true environment. The importance of proper value equivalence culminates with experiments
that highlight how MuZero [144] succeeds by optimizing a proper value-equivalent loss function.
We leave to future work the question of how VSRL might pave the way towards more principled
exploration strategies for practical algorithms like MuZero.

B.2 Greater Compression via State Abstraction

A core disconnect between VSRL and contemporary deep model-based reinforcement learning
approaches is that our lossy compression problem forces VSRL to identify a model defined with
respect to the original state space whereas methods in the latter category learn a model with respect
to a state abstraction. Indeed, algorithms like MuZero and its predecessors [147, 116, 144] never
approximate reward functions and transition models with respect to the raw image observations
generated by the environment, but instead incrementally learn some latent representation of state upon
which a corresponding model is approximated for planning. This philosophy is born out of several
years of work that elucidate the important of state abstraction as a key tool for avoiding the irrelevant
information encoded in environment states and addressing the challenge of generalization for sample-
efficient reinforcement learning large-scale environments [165, 30, 50, 67, 86, 101, 159, 68, 83, 4–
6, 55, 58, 14, 107, 9, 7, 3, 56]. In this section, we briefly introduce a small extension of VSRL that
builds on these insights to accommodate lossy MDP compressions defined on a simpler, abstract state
space (also referred to as aleatoric or situational state by Lu et al. [105], Dong et al. [56]).
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Let Φ ⊆ {S → [Z]} denote a class of state abstractions or quantizers which map environment
states to some discrete, finite abstract state space containing a known, fixed number of abstract states
Z ∈ N. For any abstract action-value function Qϕ ∈ {[Z] × A → R} and any state abstraction
ϕ ∈ Φ, we denote by Qϕ ◦ ϕ ∈ {S × A → R} the composition of the state abstraction and
abstract value function such that Qϕ ◦ ϕ is a value function for the original MDP. We adopt a similar
convention for any policy πϕ ∈ {[Z] → ∆(A)} such that πϕ ◦ ϕ ∈ {S → ∆(A)}. We now consider
carrying out the rate-distortion optimization of VSRL in each episode over abstract MDPs such
that M̃k ∈ Mϕ ≜ {[Z] × A → [0, 1]} × {[Z] × A → ∆([Z])}. Just as before, we take the input
information source to our lossy compression problem in each episode k ∈ [K] as the agent’s current
beliefs over the true MDP, P(M⋆ ∈ · | Hk). Unlike the preceding sections, our distortion function
d : M×Mϕ → R≥0 must now quantify the loss of fidelity incurred by using a compressed abstract
MDP in lieu of the true environment MDP. Consequently, we define a new distortion function

dΦ(M,M̂) = sup
ϕ∈Φ

sup
h∈[H]

||Q⋆
M,h−Q⋆

M̂,h
◦ϕ||2∞ = sup

ϕ∈Φ
sup
h∈[H]

max
(s,a)∈S×A

|Q⋆
M,h(s, a)−Q⋆

M̂,h
(ϕ(s), a)|2,

whose corresponding rate-distortion function is given by

RΦ
k (D) = inf

M̃∈Λk(D)
Ik(M⋆;M̃) Λk(D) ≜ {M̃ : Ω → M | Ek

[
dΦ(M⋆,M̃)

]
≤ D}.

Unlike when performing a lossy compression where M̃k ∈ M, the channel that represents the
identity mapping is no longer a viable option as we must now generate an abstract MDP that resides
in Mϕ. Consequently, we require the following assumption on Φ to ensure that the set of channels
over which we compute the infimum of RΦ

k (D) is non-empty.
Assumption 1. For each k ∈ [K], we have that Λk(D) ̸= ∅.

Algorithm 3 Compressed Value-equivalent Sampling for Reinforcement Learning (Compressed-
VSRL)

Input: Prior distribution P(M⋆ ∈ · | H1), Distortion threshold D ∈ R≥0, State abstraction
class Φ, Distortion function dΦ : M×Mϕ → R≥0,
for k ∈ [K] do

Compute channel P(M̃k ∈ ·|M⋆) achieving RΦ
k (D) limit

Sample MDP M⋆ ∼ P(M⋆ ∈ · | Hk)

Sample compressed MDP Mk ∼ P(M̃k ∈ · | M⋆ = M⋆)
Set state abstraction ϕk to achieve the infimum: inf

ϕ∈Φ
sup
h∈[H]

||Q⋆
M⋆,h −Q⋆

Mk,h
◦ ϕ||2∞

Compute optimal policy π⋆
Mk

and set π(k) = π⋆
Mk

◦ ϕk

Execute π(k) and observe trajectory τk
Update history Hk+1 = Hk ∪ τk
Induce posterior P(M⋆ ∈ · | Hk+1)

end for

We present our Compressed-VSRL extension as Algorithm 3 which incorporates an additional step
beyond VSRL to govern the choice of state abstraction utilized in conjunction with the sampled
compressed MDP in each episode.

We strongly suspect that an analysis paralleling that of Corollaries 1 and 2, with an appropriately
defined information ratio, can be carried out for Compressed-VSRL as well. However, for the sake of
brevity and since the result is neither immediate nor trivial, we leave the information-theoretic regret
bound stated as a conjecture.

Conjecture 1. Fix any D > 0. For any prior distribution P(M⋆ ∈ · | H1), if Γk ≤ Γ for all
k ∈ [K], then CVSRL (Algorithm 3) with distortion function dΦ has

BAYESREGRET(K,π(1), . . . , π(K)) ≤
√
ΓKRΦ

1 (D) + 2K(H + 1)
√
D.
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The significance of Conjecture 1 for allowing a simple, bounded agent to contend with a complex
environment manifests when considering analogues to Theorems 3 and 5. Specifically, for any finite-
horizon, episodic MDP with a finite action space (|A| < ∞), one may upper bound the rate-distortion
function via the entropy in the abstract model H1(Rϕ, Tϕ). Using the same proof technique as in the
preceding results, this facilitates an upper bound RΦ

1 (D) ≤ Õ
(
Z2|A|

)
which lacks any dependence

on the complexity of the (potentially infinite) environment state space, S.

B.3 From Theory to Practice

While the performance guarantees of VSRL hold for any finite-horizon, episodic MDP, it is important
to reconcile that generality with the practicality of the instantiating the algorithm. The three key
barriers to practical, scalable implementations of VSRL applied to complex tasks of interest are
the representation of epistemic uncertainty, the computation of the rate-distortion function, and
the synthesis of optimal policies for sampled MDPs. The first point is a fundamental obstacle to
Bayesian reinforcement-learning algorithms and recent work in deep reinforcement learning has
found success with simple, albeit computationally-inefficient, ensembles of networks [122, 103, 124]
or even hypermodels [63]. As progress is made towards more computationally-efficient models for
representing and resolving epistemic uncertainty through Bayesian deep learning [126, 127], there
will be greater potential for a practical implementation of VSRL.

For addressing the second issue, a classic option for computing the channel that achieves the rate-
distortion limit is the Blahut-Arimoto algorithm [31, 13] which, in theory, is a well-defined procedure
even for random variables defined on abstract alphabets [43, 42]. In practice, however, computing
such a channel for continuous outputs remains an open challenge [48]; still, several analyses and
refinements have been made to the algorithm so far [34, 132, 143, 106, 40, 112, 162, 111, 167],
and the reinforcement-learning community stands to greatly benefit from further improvements.
Continuous information sources, however, are less problematic as one may draw a sufficiently large
number of i.i.d. samples and substitute this empirical distribution for the source, leading to the so-
called plug-in estimator of the rate-distortion function for which consistency and sample-complexity
guarantees are known [79, 128]. Moreover, empirical successes for such estimators have already
been demonstrated in the multi-armed bandit setting [15, 16].

The last issue touches upon the fact that while tabular problems admit several planning algorithms
for recovering the optimal policy associated with the sampled MDP in each episode, the same
cannot be said for arbitrary state-action spaces. At best, one might hope for simply recovering an
approximation to this policy through some high-dimensional model-based planning algorithm. We
leave the questions of how to practically implement such a procedure and understand its impact on
our theory to future work.

Of course, all of the aforementioned issues arise when trying to directly implement VSRL roughly as
described by Algorithm 2. An alternative, however, is to ask how one might take existing practical
algorithms already operating at scale (such as MuZero [144]) and bring those methods closer to the
spirit of VSRL? Since these practical model-based reinforcement-learning algorithms are already
engaging with some form of state abstraction [101, 4, 159], this might entail further consideration for
information-theoretic approaches to guiding representation learning [6, 145] as a proxy to engaging
with a rate-distortion trade-off. Additionally, one of the core insights developed in this work is the
formalization of model simplifications arising out of the value equivalence principle as a form of
lossy compression. Curiously, recent meta reinforcement-learning approaches applied to multi-task
or contextual MDPs [77] arrive at a similar need of obtaining compressed representations of the
underlying MDP model during a meta-exploration phase in order to facilitate few-shot learning [131,
170, 102]. Given such approaches for learning latent/contextual variational encoders, we strongly
suspect that the known connections between rate-distortion theory and information bottlenecks [158,
11] represent a viable path to bridging the ideas between our theory and value equivalence in practice.
Notably, while these methods adopt a probabilistic inference perspective and do articulate the
encoders as posterior distributions over the underlying task, they lack any representation of epistemic
uncertainty [115], similar to MuZero; consequently, this still leaves open the earlier obstacle of how
best to represent and maintain notions of epistemic uncertainty in large-scale agents.

A third competing perspective is to recognize that recent empirical successes in Bayesian reinforce-
ment learning often avoid representing uncertainty over the model of the environment in favor of
the underlying optimal action-value functions, {Q⋆

M⋆,h}h∈[H]. Such approaches apply an algorithm
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known as Randomized Value Functions (RVF), rather than PSRL [122–124, 114, 125]. Naturally,
the optimal action-value functions of the true MDP M⋆ and its model are related and, in fact, there
is an equivalence between RVF and PSRL [117]. By maintaining epistemic uncertainty over the
action-value functions P({Q⋆

M⋆,h}h∈[H] ∈ · | Hk) rather than the underlying model, RVF methods
are amenable to practical instantiation with deep neural networks [122, 124, 114, 126]. Moreover,
extensions of this line of work have gone on to consider other scalable avenues for leveraging such
principled, practical solutions to the exploration challenge through successor features [49, 82] and
temporal-difference errors [69]. Overall, we strongly suspect that VSRL can also play an analogous
role to PSRL in this sense, providing a sound theoretical foundation that gives rise to subsequent
practical algorithms of a slightly different flavor.

C Proof of Theorem 1

Before we can prove Theorem 1, we require the following lemma whose proof we adapt from Osband
et al. [121]:

Lemma 4. Let M,M̂ be two arbitrary finite-horizon, episodic MDPs with models (R, T ) and
(R̂, T̂ ), respectively. Then, for any non-stationary policy π = (π1, . . . , πH) ∈ {S → ∆(A)}H ,

V π
M,1−V π

M̂,1
=

H∑
h=1

E
[
Bπh

MV π
M,h+1(sh)− Bπh

M̂
V π
M,h+1(sh)

]
=

H∑
h=1

E
[
Bπh

MV π
M̂,h+1

(sh)− Bπh

M̂
V π
M̂,h+1

(sh)
]
.

Proof. By simply applying the Bellman equations, we have

V π
M,1 − V π

M̂,1
= E

[
V π
M,1(s1)− V π

M̂,1
(s1)

]
= E

[
Bπ1

MV π
M,2(s1)− Bπ1

M̂
V π
M̂,2

(s1)
]

= E
[
Bπ1

MV π
M,2(s1)− Bπ1

M̂
V π
M,2(s1) + Bπ1

M̂
V π
M,2(s1)− Bπ1

M̂
V π
M̂,2

(s1)
]

= E
[
Bπ1

MV π
M,2(s1)− Bπ1

M̂
V π
M,2(s1) + Es2∼T̂ (·|s1,a1)

[
V π
M,2(s2)− V π

M̂,2
(s2)

]]
=

2∑
h=1

E
[
Bπh

MV π
M,h+1(sh)− Bπh

M̂
V π
M,h+1(sh)

]
+ E

[
V π
M,3(s3)− V π

M̂,3
(s3)

]
= . . .

=

H∑
h=1

E
[
Bπh

MV π
M,h+1(sh)− Bπh

M̂
V π
M,h+1(sh)

]
+ E

[
V π
M,H+1(sH+1)− V π

M̂,H+1
(sH+1)

]
︸ ︷︷ ︸

=0

=

H∑
h=1

E
[
Bπh

MV π
M,h+1(sh)− Bπh

M̂
V π
M,h+1(sh)

]
.
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For the second identity, we have nearly identical steps:

V π
M,1 − V π

M̂,1
= E

[
V π
M,1(s1)− V π

M̂,1
(s1)

]
= E

[
Bπ1

MV π
M,2(s1)− Bπ1

M̂
V π
M̂,2

(s1)
]

= E
[
Bπ1

MV π
M,2(s1)− Bπ1

MV π
M̂,2

(s1) + Bπ1

MV π
M̂,2

(s1)− Bπ1

M̂
V π
M̂,2

(s1)
]

= E
[
Bπ1

MV π
M̂,2

(s1)− Bπ1

M̂
V π
M̂,2

(s1) + Es2∼T (·|s1,a1)

[
V π
M,2(s2)− V π

M̂,2
(s2)

]]
=

2∑
h=1

E
[
Bπh

MV π
M̂,h+1

(sh)− Bπh

M̂
V π
M̂,h+1

(sh)
]
+ E

[
V π
M,3(s3)− V π

M̂,3
(s3)

]
= . . .

=

H∑
h=1

E
[
Bπh

MV π
M̂,h+1

(sh)− Bπh

M̂
V π
M̂,h+1

(sh)
]
+ E

[
V π
M,H+1(sH+1)− V π

M̂,H+1
(sH+1)

]
︸ ︷︷ ︸

=0

=

H∑
h=1

E
[
Bπh

MV π
M̂,h+1

(sh)− Bπh

M̂
V π
M̂,h+1

(sh)
]
.

Theorem 6. Take any Π ⊇ {S → A}, any V ⊇ {V π | π ∈ ΠH}, and fix any D ≥ 0. For each
episode k ∈ [K], let M̃k be any MDP that achieves the rate-distortion limit of RΠ,V

k (D) with
information source P(M⋆ ∈ · | Hk) and distortion function dΠ,V . Then,

BAYESREGRET(K,π(1), . . . , π(K)) ≤ E

[
K∑

k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
+ 2KH

√
D.

Proof. By applying definitions from Section 3 and applying the tower property of expectation, we
have that

BAYESREGRET(K,π(1), . . . , π(K)) = E

[
K∑

k=1

Ek [∆k]

]
.

Examining the kth episode in isolation and applying the definition of episodic regret, we have

Ek [∆k] = Ek

[
V ⋆
M⋆,1 − V π(k)

M⋆,1

]
= Ek

[
V ⋆
M⋆,1 − V ⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V π(k)

M̃k,1
− V π(k)

M⋆,1

]

= Ek

V ⋆
M⋆,1 − V

π⋆
M⋆

M̃k,1
+ V

π⋆
M⋆

M̃k,1
− V ⋆

M̃k,1︸ ︷︷ ︸
≤0

+V ⋆
M̃k,1

− V π(k)

M̃k,1
+ V π(k)

M̃k,1
− V π(k)

M⋆,1


≤ Ek

[
V ⋆
M⋆,1 − V

π⋆
M⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V π(k)

M̃k,1
− V π(k)

M⋆,1

]
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For brevity, we let π⋆
h ≜ π⋆

M⋆,h and observe that an application of Lemma 4 yields

Ek

[
V ⋆
M⋆,1 − V

π⋆
M⋆

M̃k,1

]
=

H∑
h=1

Ek

[
Bπ⋆

h

M⋆V
⋆
M⋆,h+1(sh)− Bπ⋆

h

M̃k
V ⋆
M⋆,h+1(sh)

]
≤

H∑
h=1

Ek

[∣∣Bπ⋆
h

M⋆V
⋆
M⋆,h+1(sh)− Bπ⋆

h

M̃k
V ⋆
M⋆,h+1(sh)

∣∣]
=

H∑
h=1

Ek

[√(
Bπ⋆

h

M⋆V ⋆
M⋆,h+1(sh)− Bπ⋆

h

M̃k
V ⋆
M⋆,h+1(sh)

)2
]

≤
H∑

h=1

Ek

[√
||Bπ⋆

h

M⋆V ⋆
M⋆,h+1 − Bπ⋆

h

M̃k
V ⋆
M⋆,h+1||2∞

]

≤
H∑

h=1

√
Ek

[
||Bπ⋆

h

M⋆V ⋆
M⋆,h+1 − Bπ⋆

h

M̃k
V ⋆
M⋆,h+1||2∞

]

≤
H∑

h=1

√√√√√Ek

 sup
π∈Π
V ∈V

||Bπ
M⋆V − Bπ

M̃k
V ||2∞


=

H∑
h=1

√
Ek

[
dΠ,V(M⋆,M̃k)

]
≤ H

√
D,

where the third inequality invokes Jensen’s inequality, the fourth inequality holds as Π ⊇ {S → A}
and V ⊇ {V π | π ∈ ΠH} ensures that V ⋆

M⋆,h ∈ V , ∀h ∈ [H], and the final inequality holds since

M̃k achieves the rate-distortion limit in the kth episode, by assumption.

We follow the same sequence of steps to obtain

Ek

[
V π(k)

M̃k,1
− V π(k)

M⋆,1

]
=

H∑
h=1

Ek

[
Bπ

(k)
h

M⋆ V
π(k)

M⋆,h+1(sh)− Bπ
(k)
h

M̃k
V π(k)

M⋆,h+1(sh)

]

≤
H∑

h=1

Ek

[∣∣Bπ
(k)
h

M⋆ V
π(k)

M⋆,h+1(sh)− Bπ
(k)
h

M̃k
V π(k)

M⋆,h+1(sh)
∣∣]

=

H∑
h=1

Ek

√(
Bπ

(k)
h

M⋆ V π(k)

M⋆,h+1(sh)− Bπ
(k)
h

M̃k
V π(k)

M⋆,h+1(sh)

)2


≤
H∑

h=1

Ek

[√
||Bπ

(k)
h

M⋆ V π(k)

M⋆,h+1 − Bπ
(k)
h

M̃k
V π(k)

M⋆,h+1||2∞

]

≤
H∑

h=1

√
Ek

[
||Bπ

(k)
h

M⋆ V π(k)

M⋆,h+1 − Bπ
(k)
h

M̃k
V π(k)

M⋆,h+1||2∞
]

≤
H∑

h=1

√√√√√Ek

 sup
π∈Π
V ∈V

||Bπ
M⋆V − Bπ

M̃k
V ||2∞


=

H∑
h=1

√
Ek

[
dΠ,V(M⋆,M̃k)

]
≤ H

√
D.
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Substituting back into our original expression, we have

Ek [∆k] = Ek

[
V ⋆
M⋆,1 − V π(k)

M⋆,1

]
≤ Ek

[
V ⋆
M⋆,1 − V

π⋆
M⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V π(k)

M̃k,1
− V π(k)

M⋆,1

]
≤ Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]
+ 2H

√
D.

Applying this upper bound on episodic regret in each episode yields

BAYESREGRET(K,π(1), . . . , π(K)) = E

[
K∑

k=1

Ek [∆k]

]

≤ E

[
K∑

k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
+ 2KH

√
D,

as desired.

D Proof of Lemma 6

In this section, we develop counterparts to the results of Arumugam and Van Roy [15]
for the reinforcement-learning setting which relate each rate-distortion function RΠ,V

k (D) to
the information accumulated by the agent over the course of learning. Recall that τk =

(s
(k)
1 , a

(k)
1 , r

(k)
1 , . . . , s

(k)
H , a

(k)
H , r

(k)
H , s

(k)
H+1) is a random variable denoting the trajectory experienced

by the agent in the kth episode given the history Hk. Let MDP Mk be the MDP sampled in the kth
episode.

Lemma 5. For all k ∈ [K],

Ek

[
RΠ,V

k+1(D)
]
≤ RΠ,V

k (D)− Ik(M̃k; τk | Mk).

Proof. Recall that, by definition Hk+1 = (Hk, τk). For all k ∈ [K], observe that, conditioned on
the true MDP M⋆ and sampled MDP Mk which generated the history Hk+1, we have that for any
compressed MDP M̃, P(Hk+1,M̃ | M⋆,Mk) = P(Hk+1 | M⋆,Mk)P(M̃ | M⋆,Mk). Using this
independence Hk+1 ⊥ M̃ | M⋆,Mk ∀k ∈ [K], we have that

0 = Ik(Hk+1;M̃ | M⋆,Mk) = Ik(Hk, τk;M̃ | M⋆,Mk) = Ik(τk;M̃ | M⋆,Mk).

Moreover, we know that the sampled MDP Mk does not affect our uncertainty in the true MDP M⋆

such that
Ik(M⋆;M̃) = Ik(M⋆;M̃ | Mk).

By the chain rule of mutual information,

Ik(M⋆;M̃) = Ik(M⋆;M̃ | Mk) = Ik(M⋆;M̃ | Mk)+Ik(τk;M̃ | M⋆,Mk) = Ik(M⋆, τk;M̃ | Mk).

Applying the chain rule a second time yields

Ik(M⋆;M̃) = Ik(M⋆, τk;M̃ | Mk) = Ik(M̃; τk | Mk) + Ik(M⋆;M̃ | τk,Mk).

By definition of the rate-distortion function, we have

Ek

[
RΠ,V

k+1(D)
]
= Ek

[
inf

M̃∈Λk+1(D)
Ik+1(M⋆;M̃)

]
, Λk+1(D) = {M̃ : Ω → M | Ek+1[dΠ,V(M⋆,M̃)] ≤ D}.
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Recall that, by definition, M̃k achieves the rate-distortion limit of RΠ,V
k (D), implying that

Ek[dΠ,V(M⋆,M̃k)] ≤ D. By the tower property of expectation, we recover that

Ek

[
Ek+1[dΠ,V(M⋆,M̃k)]

]
= Ek[dΠ,V(M⋆,M̃k)] ≤ D,

and so, in expectation given the current history Hk, M̃k ∈ Λk+1(D). Thus, we have that

Ek

[
RΠ,V

k+1(D)
]
= Ek

[
inf

M̃∈Λk+1(D)
Ik+1(M⋆;M̃)

]
≤ Ek

[
Ik+1(M⋆;M̃k)

]
.

Re-arranging terms from our previous chain rule expansions, we may expand the integrand as

Ek

[
Ik+1(M⋆;M̃k)

]
= Ek

[
Ik(M⋆;M̃k | τk,Mk)

]
= Ek

[
Ik(M⋆;M̃k)− Ik(M̃k, τk | Mk)

]
= Ik(M⋆;M̃k)− Ik(M̃k, τk | Mk)

= RΠ,V
k (D)− Ik(M̃k; τk | Mk),

where the penultimate line follows since both mutual information terms are σ(Hk)-measurable and
the final line follows by definition of M̃k.

At the beginning of each episode, our generalization of PSRL will identify a compressed MDP M̃k

that achieves the rate-distortion limit based on the current history Hk. As data accumulates and
the agent’s knowledge of the true MDP is refined, this satisficing MDP M̃k will be recomputed to
reflect that updated knowledge. The previous lemma shows that the expected number of bits the
agent must identify to learn this new target MDP decreases as this adaptation occurs, highlighting
two possible sources of improvement: (1) shifting from a compressed MDP M̃k to M̃k+1 and (2) a
decrease of Ik(M̃; τk | Mk) that occurs from observing the trajectory τk. The former reflects the
agent’s improved ability in synthesizing an approximately value-equivalent MDP to pursue instead of
M⋆ while the latter captures information gained about the previous target M̃k from the experienced
trajectory τk.

Fact 1 ([41]). For any Π,V and all k ∈ [K], RΠ,V
k (D) is a non-negative, convex, and monotonically-

decreasing function in D.

Let M̃ be a compressed MDP that is exactly value-equivalent to M⋆ which, by definition, implies a
distortion of exactly zero. Further recall that M⋆ is itself a MDP that achieves zero distortion, albeit
one that has no guarantee of achieving the rate-distortion limit. Fact 1 yields the following chain of
inequalities that hold for all k ∈ [K] and D ≥ 0:

RΠ,V
k (D) ≤ Ik(M⋆;M̃) ≤ Ik(M⋆;M⋆) = Hk(M⋆).

This chain of inequalities confirms an important goal of satisficing in PSRL; namely, that the
compressed MDP an agent attempts to solve in each episode k ∈ [K], M̃k, requires fewer bits of
information than what is needed to fully identify the true MDP M⋆. This gives rise to the following
corollary:
Corollary 5. For any k ∈ [K],

Ek

[
K∑

k′=k

Ik′(M̃k′ ; τk′ | Mk′)

]
≤ Hk(M⋆).

Instead of proving this corollary, we prove the following lemma which yields the corollary through
Fact 1:
Lemma 6. For any k ∈ [K],

Ek

[
K∑

k′=k

Ik′(M̃k′ ; τk′ | Mk′)

]
≤ RΠ,V

k (D).
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Proof. Observe that by Lemma 5, for all k ∈ [K],

Ik(M̃k; τk | Mk) ≤ RΠ,V
k (D)− Ek

[
RΠ,V

k+1(D)
]
.

Directly substituting in, we have

Ek

[
K∑

k′=k

Ik′(M̃k′ ; τk′ | Mk′)

]
≤ Ek

[
K∑

k′=k

(
RΠ,V

k′ (D)− Ek′

[
RΠ,V

k′+1(D)
])]

.

Applying linearity of expectation and breaking apart the sum yields

Ek

[
K∑

k′=k

Ik′(M̃k′ ; τk′ | Mk′)

]
≤

K∑
k′=k

Ek

[
RΠ,V

k′ (D)
]
−

K∑
k′=k

Ek

[
Ek′

[
RΠ,V

k′+1(D)
]]

.

Note that the first term can simply be separated into
K∑

k′=k

Ek

[
RΠ,V

k′ (D)
]
= Ek

[
RΠ,V

k (D)
]
+

K∑
k′=k+1

Ek

[
RΠ,V

k′ (D)
]
= RΠ,V

k (D)+

K∑
k′=k+1

Ek

[
RΠ,V

k′ (D)
]
.

Meanwhile, since σ(Hk) ⊆ σ(Hk′), the tower property of expectation yields
K∑

k′=k

Ek

[
Ek′

[
RΠ,V

k′+1(D)
]]

=

K∑
k′=k

Ek

[
RΠ,V

k′+1(D)
]
=

K∑
k′=k+1

Ek

[
RΠ,V

k′ (D)
]
.

Combining the expansions results in

Ek

[
K∑

k′=k

Ik′(M̃k′ ; τk′ | Mk′)

]
≤

K∑
k′=k

Ek

[
RΠ,V

k′ (D)
]
−

K∑
k′=k

Ek

[
Ek′

[
RΠ,V

k′+1(D)
]]

= RΠ,V
k (D) +

K∑
k′=k+1

Ek

[
RΠ,V

k′ (D)
]
−

K∑
k′=k+1

Ek

[
RΠ,V

k′ (D)
]

= RΠ,V
k (D).

E Proof of Theorem 2

In this section, we prove a general, information-theoretic satisficing Bayesian regret bound. Central
to our analysis is the information ratio in the kth episode:

Γk ≜
Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]2
Ik(M̃k; τk,Mk)

, ∀k ∈ [K].

Theorem 7 (Information-Theoretic Satisficing Regret Bound). If Γk ≤ Γ, for all k ∈ [K], then

Ek

[
K∑

k=1

E
[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
≤

√
ΓKRΠ,V

1 (D).

Proof. The definition of the information ratio Γk for each term in the sum followed by the fact that
Γk ≤ Γ, ∀k ∈ [K] yields

E

[
K∑

k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
= E

[
K∑

k=1

√
ΓkIk(M̃k; τk,Mk)

]
≤

√
ΓE

[
K∑

k=1

√
Ik(M̃k; τk,Mk)

]
.

Applying the tower property of expectation and Jensen’s inequality in sequence yields√
ΓE

[
K∑

k=1

√
Ik(M̃k; τk,Mk)

]
≤

√
ΓE

[
K∑

k=1

√
Ek

[
Ik(M̃k; τk,Mk)

]]
.
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By the Cauchy-Schwarz inequality, we have that

√
ΓE

[
K∑

k=1

√
Ek

[
Ik(M̃k; τk,Mk)

]]
≤

√
ΓE


√√√√K

K∑
k=1

Ek

[
Ik(M̃k; τk,Mk)

] .

Recall that the sampled Mk by itself offers no information about M̃k. Consequently, by the chain
rule of mutual information, we have

Ik(M̃k; τk,Mk) = Ik(M̃k;Mk) + Ik(M̃k; τk | Mk) = Ik(M̃k; τk | Mk).

Therefore,

√
ΓE


√√√√K

K∑
k=1

Ek

[
Ik(M̃k; τk,Mk)

] =
√
ΓE


√√√√K

K∑
k=1

Ek

[
Ik(M̃k; τk | Mk)

] .

Directly applying Lemma 6 followed by Jensen’s inequality yields

√
ΓE


√√√√K

K∑
k=1

Ek

[
Ik(M̃k; τk | Mk)

] ≤
√
ΓE

[√
KRΠ,V

1 (D)

]
≤

√
ΓKE

[
RΠ,V

1 (D)
]
.

Since the expectation is with respect to the prior P(M⋆ ∈ · | H1) and RΠ,V
1 (D) is σ(H1)-measurable,

we have √
ΓKE

[
RΠ,V

1 (D)
]
=

√
ΓKRΠ,V

1 (D),

as desired.

F Proof of Lemma 1

In this section, we clarify how the shrinkage or growth of the policy class Π and value function class
V affect the rate-distortion function at the kth episode, RΠ,V

k (D).

Lemma 7 (Dominance with Approximate Value Equivalence). For any two Π,Π′ and any V,V ′

such that Π′ ⊆ Π ⊆ {S → ∆(A)} and V ′ ⊆ V ⊆ {S → R}, we have

RΠ,V
k (D) ≥ RΠ′,V′

k (D), ∀k ∈ [K], D > 0.

Proof. Recall that the distortion function d : M × M → R≥0 with respect to policy class Π and
value function class V is given by

dΠ,V(M,M̂) = sup
π∈Π
V ∈V

||Bπ
MV − Bπ

M̂V ||2∞ = sup
π∈Π
V ∈V

(
max
s∈S

|Bπ
MV (s)− Bπ

M̂V (s)|
)2

,

with an analogous definition holding for the distortion function dΠ′,V′ under Π′ and V ′. In the parlance
of Stjernvall [150], we have that dΠ,V dominates dΠ′,V′ if for all source distributions P(M⋆ ∈ · | Hk)
and all distortion thresholds D > 0,

RΠ,V
k (D) ≥ RΠ′,V′

k (D).

In words, a distortion function d1 that dominates another distortion function d2 requires more bits of
information in order to achieve the rate-distortion limit for all information sources and at all distortion
thresholds. From this definition, it is clear that statement of the theorem holds if we can establish a
dominance relationship between dΠ,V and dΠ′,V′ .

Recognizing the significant amount of calculation needed to exhaustively verify a dominance rela-
tionship by hand, Stjernvall [150] prescribes six sufficient conditions for establishing dominance
(with varying degrees of strength) between distortion functions; we will leverage the second of these
characterizations (C2).
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Fix an arbitrary source distribution P(M⋆ ∈ · | Hk) and distortion threshold D > 0. We denote by
M̃k the MDP that achieves the rate-distortion limit RΠ,V

k (D) under our chosen source, distortion
threshold, and distortion function dΠ,V . By definition of the supremum, we have that for any two
MDPs M,M̂

dΠ′,V′(M,M̂) = sup
π∈Π′

V ∈V′

||Bπ
MV − Bπ

M̂V ||2∞ ≤ sup
π∈Π
V ∈V

||Bπ
MV − Bπ

M̂V ||2∞ = dΠ,V(M,M̂).

Consequently, since M̃k achieves the rate-distortion limit, we have

Ek

[
dΠ′,V′(M⋆,M̃k)

]
≤ Ek

[
dΠ,V(M⋆,M̃k)

]
≤ D.

Observe that, since our information source and distortion threshold were arbitrary, we have that
for all sources P(M⋆ ∈ · | Hk) and all thresholds D > 0 with M̃k achieving the rate-distortion
limit under distortion dΠ,V , there exists a Markov chain M⋆ − M̃k − M̃′

k such that M̃k = M̃′
k

(the mapping between them is the identity function) and E
[
dΠ′,V′(M⋆,M̃′

k)
]
≤ D. Thus, by

Theorem 2 of Stjernvall [150] (specifically, C2 =⇒ D4), we have that dΠ,V dominates dΠ′,V′ for
any Π′ ⊆ Π ⊆ {S → ∆(A)} and V ′ ⊆ V ⊆ {S → R}. As previously discussed, the claim of the
theorem follows as an immediate consequence, by definition of dominance.

G Proof of Lemma 2

Fano’s inequality [64] is a key result in information theory that relates conditional entropy to the
probability of error in a discrete, multi-way hypothesis testing problem. The traditional form of the
result, however, determines an error as the inability to exactly recover the random variable being
estimated. Naturally, given the lossy compression context of this work, a more useful analysis will
use a lack of adherence to the distortion upper bound as the more appropriate notion of error. For
this purpose, we require a more general result of the same flavor as those developed by Duchi and
Wainwright [60]; in particular, we leverage an extension of their generalized Fano’s inequality which
is given as Question 7.1 in [59], whose proof we provide and adapt to our setting for completeness.
We first require the following lemma:
Lemma 8. Let P and Q be two arbitrary probability measures on the same measurable space such
that P ≪ Q. Then,

DKL(P || Q) ≥ log

(
1

Q(P > 0)

)
= log

(
1

Q(supp (P ))

)
.

Proof. The proof is immediate via a generalization of the traditional log-sum inequality [41]. Specifi-
cally, since P ≪ Q, we have

DKL(P || Q) =

∫
log

(
dP

dQ

)
dP =

∫
P>0

log

(
dP

dQ

)
dP ≥

(∫
dP

)
log

 ∫
dP∫

P>0

dQ

 = log

(
1

Q(P > 0)

)
.

Theorem 8. Take any Π ⊆ {S → ∆(A)} and V ⊆ {S → R}. For any D ≥ 0 and any k ∈ [K],
define δ = sup

M̂∈M

P(dΠ,V(M⋆, M̂) ≤ D | Hk). Then,

sup
M̃∈Λk(D)

P(dΠ,V(M⋆,M̃) > D | Hk) ≥ 1−
RΠ,V

k (D) + log(2)

log
(
1
δ

) .

Proof. For any episode k ∈ [K], recall that the agent’s beliefs over the true MDP M⋆ are distributed
according to P(M⋆ ∈ · | Hk). Let M̃ be an arbitrary random variable denoting a compressed MDP
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taking values in the set M and, for a fixed distortion threshold D, we let N ⊂ M × M denote
the measurable subset of M×M that consists of all pairs of MDP which are approximately value
equivalent; that is, (M, M̂) ∈ N ⇐⇒ dΠ,V(M,M̂) ≤ D. For any MDP M̂ ∈ M, we define a slice

N
M̂

≜ {M ∈ M | (M, M̂) ∈ N},

as the collection of MDPs that are approximately value equivalent to a given M̂ . In the context of
Fano’s inequality and our lossy compression problem, N

M̂
is the set of original or uncompressed

MDPs for which a channel output of M̂ should not be considered an error. Furthermore, define

pmax ≜ sup
M̂∈M

P(M⋆ ∈ N
M̂

| Hk) pmin ≜ inf
M̂∈M

P(M⋆ ∈ N
M̂

| Hk).

Recall that for p ∈ [0, 1], we have the binary entropy function h2(p) = −p log(p)−(1−p) log(1−p).

Define the indicator random variable E = 1((M⋆,M̃) /∈ N ). Recalling that
I(X;Y ) = E [DKL(P(Y ∈ · | X) || P(Y ∈ ·))] ,

we have

Ik(M⋆; (M̃, E))E
[
DKL(Pk(M⋆ ∈ · | M̃, E) || Pk(M⋆ ∈ ·))

]
= Pk(E = 1) · E

[
DKL(Pk(M⋆ ∈ · | M̃, E = 1) || Pk(M⋆ ∈ ·))

]
+ Pk(E = 0) · E

[
DKL(Pk(M⋆ ∈ · | M̃, E = 0) || Pk(M⋆ ∈ ·))

]
.

At this point, we observe that for any M̂ ∈ M,

supp
(
Pk(M⋆ ∈ · | M̃ = M̂,E = 0)

)
⊂ N

M̂
supp

(
Pk(M⋆ ∈ · | M̃ = M̂,E = 1)

)
⊂ N c

M̂
,

by definition of the slice N
M̂

. Thus,

P(M⋆ ∈ supp
(
Pk(M⋆ ∈ · | M̃ = M̂,E = 0)

)
| Hk) ≤ P(M⋆ ∈ N

M̂
| Hk)

P(M⋆ ∈ supp
(
Pk(M⋆ ∈ · | M̃ = M̂,E = 1)

)
| Hk) ≤ P(M⋆ ∈ N c

M̂
| Hk) = 1− P(M⋆ ∈ N

M̂
| Hk)

and, consequently, we have by Lemma 8 that

DKL(Pk(M⋆ ∈ · | M̃ = M̂,E = 0) || Pk(M⋆ ∈ ·)) ≥ log

(
1

P(M⋆ ∈ N
M̂

| Hk)

)
≥ log

(
1

pmax

)
,

DKL(Pk(M⋆ ∈ · | M̃ = M̂,E = 1) || Pk(M⋆ ∈ ·)) ≥ log

(
1

1− P(M⋆ ∈ N
M̂

| Hk)

)
≥ log

(
1

1− pmin

)
.

Applying these lower bounds to our original mutual information term, we see that

Ik(M⋆; (M̃, E)) ≥ P(E = 1 | Hk) log

(
1

1− pmin

)
+ P(E = 0 | Hk) log

(
1

pmax

)
= P(E = 1 | Hk) log

(
1

1− pmin

)
+ (1− P(E = 1 | Hk)) log

(
1

pmax

)
= P(E = 1 | Hk) log

(
pmax

1− pmin

)
+ log

(
1

pmax

)
.

Now applying the chain rule of mutual information, the definition of mutual information, the non-
negativity of entropy and the fact that conditioning reduces entropy in sequence, we obtain

Ik(M⋆; (M̃, E)) = Ik(M⋆;M̃) + Ik(M⋆;E | M̃)

= Ik(M⋆;M̃) +Hk(E | M̃)−Hk(E | M̃,M⋆)

≤ Ik(M⋆;M̃) +Hk(E | M̃)

≤ Ik(M⋆;M̃) +Hk(E)

≤ Ik(M⋆;M̃) +H(E)
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Combining the upper and lower bounds while multiplying through by −1 yields

h2(P(E = 1)) + P(E = 1 | Hk) log

(
1− pmin

pmax

)
≥ log

(
1

pmax

)
− Ik(M⋆;M̃).

Recognizing that we have the following upper bounds

log(2) + P(E = 1 | Hk) log

(
1

pmax

)
≥ h2(P(E = 1)) + P(E = 1 | Hk) log

(
1

pmax

)
≥ h2(P(E = 1)) + P(E = 1 | Hk) log

(
1− pmin

pmax

)
,

and re-arranging terms yields

P(E = 1 | Hk) ≥
log

(
1

pmax

)
− Ik(M⋆;M̃)− log(2)

log
(

1
pmax

) = 1− Ik(M⋆;M̃) + log(2)

log
(
1
δ

) ,

where δ = sup
M̂∈M

P(dΠ,V(M⋆, M̂) ≤ D | Hk). Noting that

P(E = 1 | Hk) = P((M⋆,M̃) /∈ N | Hk) = P(dΠ,V(M⋆,M̃) > D | Hk),

and taking the supremum on both sides, we have

sup
M̃∈Λk(D)

P(dΠ,V(M⋆,M̃) > D | Hk) ≥ sup
M̃∈Λk(D)

[
1− Ik(M⋆;M̃) + log(2)

log
(
1
δ

) ]

= 1− inf
M̃∈Λk(D)

Ik(M⋆;M̃) + log(2)

log
(
1
δ

)
= 1−

RΠ,V
k (D) + log(2)

log
(
1
δ

) ,

as desired.

H Proof of Theorem 3

In specializing to the tabular MDP setting, we wish to simplify our information-theoretic Bayesian
regret bound (Corollary 1) into one that only depends on the standard problem-specific quantities
(|S|, |A|, K, H). To do this, we will necessarily decompose mutual information into its constituent
entropy terms. Inconveniently, while mutual information is well-defined for arbitrary random
variables, entropy is infinite for continuous random variables (like the reward function and transition
function random variables, R⋆ and T ⋆). Rather than resorting to differential entropy, which lacks
several desirable properties of Shannon entropy, we explicitly replace these random variables by
their discretized analogues, obtained via a sufficiently-fine quantization of their ranges a priori such
that the differential entropy of the original random variables is well-approximated by the associated
metric entropy or ε-entropy [93], courtesy of Theorem 8.3.1 of [41].

Recall that, for any ε > 0, a ε-cover of a set Θ with respect to a (semi)-metric ρ : Θ×Θ → R≥0 is a
set {θ1, . . . , θN} with θi ∈ Θ, ∀i ∈ [N ], such that for any other point θ ∈ Θ, ∃ n ∈ [N ] such that
ρ(θ, θn) ≤ ε. The ε-covering number of Θ is defined as

N (ε,Θ, ρ) ≜ inf{N ∈ N | ∃ an ε-cover {θ1, . . . , θN} of Θ}.
Conversely, a ε-packing of a set Θ with respect to ρ is a set {θ1, . . . , θM} with θi ∈ Θ, ∀i ∈ [M ],
such that for any distinct i, j ∈ [N ], we have ρ(θi, θj) ≥ ε. The ε-packing number of a set Θ is
defined as

M(ε,Θ, ρ) ≜ sup{M ∈ N | ∃ an ε-packing {θ1, . . . , θM} of Θ}.
With slight abuse of notation, for any norm || · || on a set Θ, we write N (ε,Θ, || · ||) to denote
the ε-covering number under the metric induced by || · ||, and similarly for the ε-packing number
M(ε,Θ, || · ||). Theorem IV of [93] establishes the following relationship between the ε-covering
number and ε-packing number that we will use to upper bound metric entropy:
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Fact 2. For any metric space (Θ, ρ) and any ε > 0, N (ε,Θ, ρ) ≤ M(ε,Θ, ρ).

This allows for a generalization of Lemma 7.6 of [59] to norm balls of arbitrary radius whose proof
we include for completeness.
Lemma 9. For any norm || · ||, let Bd = {θ ∈ Rd | ||θ|| ≤ 1} denote the unit || · ||-ball in Rd.
For any r ∈ (0,∞), we let rBd = {θ ∈ Rd | ||θ|| ≤ r} denote the scaling of the unit ball by r or,
equivalently, the || · ||-ball of radius r. Then, for any ε ∈ (0, r],

log
(
N (ε, rBd, || · ||)

)
≤ d log

(
1 +

2r

ε

)
.

Proof. Let Vol (·) be the function that denotes the volume of an input ball in Rd such that Vol
(
rBd

)
=

rd. Since an ε-packing requires filling rBd with disjoint balls of diameter ε, we have

M(ε, rBd, || · ||)Vol
(ε
2
Bd

)
=

M(ε,rBd,||·||)∑
i=1

Vol
(ε
2
Bd

)
≤ Vol

((
r +

ε

2

)
Bd

)
.

Dividing through by Vol
(
ε
2B

d
)

yields

M(ε, rBd, || · ||) ≤
Vol

((
r + ε

2

)
Bd

)
Vol

(
ε
2Bd

) =

(
r + ε

2
ε
2

)d

=

(
1 +

2r

ε

)d

.

Applying Fact 2 gives us

N (ε, rBd, || · ||) ≤ M(ε, rBd, || · ||) ≤
(
1 +

2r

ε

)d

,

and taking logarithms on both sides renders the desired inequality.

Theorem 9. Take any Π ⊇ {S → A}, any V ⊇ {V π | π ∈ ΠH}, and let D = 0. For any prior
distribution P(M⋆ ∈ · | H1) over tabular MDPs, if Γk ≤ Γ for all k ∈ [K], then VSRL (Algorithm
2) has

BAYESREGRET(K,π(1), . . . , π(K)) ≤ O
(
|S|

√
Γ|A|K

)
.

Proof. Using Fact 1, we have that

RΠ,V
1 (D) ≤ H1(M⋆) = H1(R⋆, T ⋆) = H1(R⋆) +H1(T ⋆ | R⋆) = H1(R⋆) +H1(T ⋆),

where the first equality recognizes that all randomness in the true MDP M⋆ is driven by the model
(R⋆, T ⋆), the second equality applies the chain rule of entropy, and the final equality recognizes that
the reward function and transition function random variables are independent.

For some fixed εR > 0, consider the εR
2 -cover of the unit interval [0, 1] with respect to the L1-

norm || · ||1 as a quantization into bins of width εR. Observe that the true environment reward
function R⋆ : S ×A → [0, 1] is well-approximated by mapping state-action pairs onto this εR

2 -cover,
for a sufficiently small εR > 0. Consequently, we treat R⋆ as a discrete random variable where
|supp(R⋆)| = N ( εR2 , [0, 1], || · ||1)|S||A|. Recall that, for a discrete random variable X with support
on X , H(X) ≤ log (|X |) . Applying this upper bound and Lemma 9 in sequence, we have that

H1(R⋆) ≤ |S||A| log
(
N (

εR
2
, [0, 1], || · ||1)

)
≤ |S||A| log

(
1 +

4

εR

)
.

Applying the same sequence of steps mutatis mutandis for the transition function T ⋆ under a εT
2 -cover,

for some fixed εT > 0, we also have

H1(T ⋆) ≤ |S|2|A| log
(
N (

εT
2
, [0, 1], || · ||1)

)
≤ |S|2|A| log

(
1 +

4

εT

)
.

Applying these bounds following the earlier rate-distortion function upper bound to the result of
Corollary 1 with D = 0, we have

BAYESREGRET(K,π(1), . . . , π(K)) ≤

√
ΓK

(
|S||A| log

(
1 +

4

εR

)
+ |S|2|A| log

(
1 +

4

εT

))
.
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I Proof of Theorem 4

Our proof of Theorem 4 utilizes the following fact, widely known as the performance-difference
lemma, adapted to the finite-horizon setting whose proof we replicate here.

Lemma 10 (Performance-Difference Lemma [89]). For any finite-horizon MDP ⟨S,A,R, T , β,H⟩
and any two non-stationary policies π1, π2 ∈ ΠH , let ρπ2(τ) denote the distribution over trajectories
induced by policy π2. Then,

V π1
1 − V π2

1 = Eτ∼ρπ2

[
H∑

h=1

(V π1

h (sh)−Qπ1

h (sh, ah))

]
.

Proof.

V π1
1 − V π2

1 = Es1∼β [V
π1
1 (s1)− V π2

1 (s1)]

= Es1∼β

[
V π1
1 (s1)− Eτ∼ρπ2

[
H∑

h=1

R(sh, ah)
∣∣ s1]]

= Eτ∼ρπ2

[
V π1
1 (s1)−

H∑
h=1

R(sh, ah)

]

= Eτ∼ρπ2

[
V π1
1 (s1) +

H∑
h=2

V π1

h (sh)−
H∑

h=1

(
R(sh, ah)− V π1

h+1(sh+1)
)]

= Eτ∼ρπ2

[
H∑

h=1

V π1

h (sh)−
(
R(sh, ah) + V π1

h+1(sh+1)
)]

= Eτ∼ρπ2

[
H∑

h=1

(
V π1

h (sh)−
(
R(sh, ah) + E

[
V π1

h+1(sh+1)
∣∣ sh, ah]))]

= Eτ∼ρπ2

[
H∑

h=1

(V π1

h (sh)−Qπ1

h (sh, ah))

]
,

where the penultimate line invokes the tower property of expectation.

Theorem 10. Fix any D ≥ 0 and, for each episode k ∈ [K], let M̃k be any MDP that achieves the
rate-distortion limit of RQ⋆

k (D) with information source P(M⋆ ∈ · | Hk) and distortion function
dQ⋆ . Then,

BAYESREGRET(K,π(1), . . . , π(K)) ≤ E

[
K∑

k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
+ (2H + 2)K

√
D.

Proof. By applying definitions from Section 3 and applying the tower property of expectation, we
have that

BAYESREGRET(K,π(1), . . . , π(K)) = E

[
K∑

k=1

Ek [∆k]

]
.
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Examining the kth episode in isolation and applying the definition of episodic regret, we have

Ek [∆k] = Ek

[
V ⋆
M⋆,1 − V π(k)

M⋆,1

]
= Ek

[
V ⋆
M⋆,1 − V ⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V π(k)

M̃k,1
− V π(k)

M⋆,1

]

= Ek

V ⋆
M⋆,1 − V ⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V π(k)

M̃k,1
− V ⋆

M̃k,1︸ ︷︷ ︸
≤0

+V ⋆
M̃k,1

− V π(k)

M⋆,1


≤ Ek

[
V ⋆
M⋆,1 − V ⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M⋆,1

]
= Ek

[
V ⋆
M⋆,1 − V ⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V ⋆

M̃k,1
− V ⋆

M⋆,1 + V ⋆
M⋆,1 − V π(k)

M⋆,1

]
.

Observe that

Ek

[
V ⋆
M⋆,1 − V ⋆

M̃k,1

]
≤ Ek

[
||V ⋆

M⋆,1 − V ⋆
M̃k,1

||∞
]

= Ek

[
max
s∈S

|V ⋆
M⋆,1(s)− V ⋆

M̃k,1
(s)|

]
= Ek

[
max
s∈S

|max
a∈A

Q⋆
M⋆,1(s, a)−max

a′∈A
Q⋆

M̃k,1
(s, a′)|

]
≤ Ek

[
max
s∈S

max
a∈A

|Q⋆
M⋆,1(s, a)−Q⋆

M̃k,1
(s, a)|

]
= Ek

[
||Q⋆

M⋆,1 −Q⋆
M̃k,1

||∞
]

= Ek

[√
||Q⋆

M⋆,1 −Q⋆
M̃k,1

||2∞
]

≤
√
Ek

[
||Q⋆

M⋆,1 −Q⋆
M̃k,1

||2∞
]

≤

√
Ek

[
sup
h∈H

||Q⋆
M⋆,h −Q⋆

M̃k,h
||2∞

]
=

√
Ek

[
dQ⋆(M⋆,M̃k)

]
≤

√
D,

where the penultimate inequality is due to Jensen’s inequality and the final inequality holds as M̃k

achieves the rate-distortion limit under dQ⋆ , by assumption. Moreover, the exact argument can be
repeated to see that

Ek

[
V ⋆
M̃k,1

− V ⋆
M⋆,1

]
≤ Ek

[
||V ⋆

M̃k,1
− V ⋆

M⋆,1||∞
]

= Ek

[
||V ⋆

M⋆,1 − V ⋆
M̃k,1

||∞
]

≤
√
D.

Combining these two inequalities yields

Ek [∆k] ≤ Ek

[
V ⋆
M⋆,1 − V ⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V ⋆

M̃k,1
− V ⋆

M⋆,1 + V ⋆
M⋆,1 − V π(k)

M⋆,1

]
≤ Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1
+ V ⋆

M⋆,1 − V π(k)

M⋆,1

]
+ 2

√
D.

Observe that by virtue of posterior sampling [135, 121, 120] the compressed MDP being targeted by
the agent M̃k and the sampled MDP Mk are identically distributed, conditioned upon the information
available within any history Hk, and so we have

Ek

[
V ⋆
M⋆,1 − V π(k)

M⋆,1

]
= Ek

[
V ⋆
M⋆,1 − V

π⋆
Mk

M⋆,1

]
= Ek

[
V ⋆
M⋆,1 − V

π⋆

M̃k

M⋆,1

]
.
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Now applying the performance-difference lemma (Lemma 10), we see that

Ek

[
V ⋆
M⋆,1 − V

π⋆

M̃k

M⋆,1

]
= Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

(
V ⋆
M⋆,h(sh)−Q⋆

M⋆,h(sh, ah)
)]]

= Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

(
max
a∈A

Q⋆
M⋆,h(sh, a)−Q⋆

M⋆,h(sh, ah)

)]]

≤ Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣max
a∈A

Q⋆
M⋆,h(sh, a)−Q⋆

M⋆,h(sh, ah)
∣∣∣]] .

Define a⋆ = argmax
a∈A

Q⋆
M⋆,h(sh, a) such that

Ek

[
V ⋆
M⋆,1 − V

π⋆

M̃k

M⋆,1

]
= Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣max
a∈A

Q⋆
M⋆,h(sh, a)−Q⋆

M⋆,h(sh, ah)
∣∣∣]]

= Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣Q⋆
M⋆,h(sh, a

⋆)−Q⋆
M⋆,h(sh, ah)

∣∣∣]]

= Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣Q⋆
M⋆,h(sh, a

⋆)−Q⋆
M̃k,h

(sh, a
⋆) +Q⋆

M̃k,h
(sh, a

⋆)−Q⋆
M⋆,h(sh, ah)

∣∣∣]] .
Applying the triangle inequality and examining each difference in isolation, we have

Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣Q⋆
M⋆,h(sh, a

⋆)−Q⋆
M̃k,h

(sh, a
⋆)
∣∣∣]] ≤ Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

||Q⋆
M⋆,h −Q⋆

M̃k,h
||∞

]]

≤ HEk

[
sup
h∈H

||Q⋆
M⋆,h −Q⋆

M̃k,h
||∞

]
= HEk

[
sup
h∈H

√
||Q⋆

M⋆,h −Q⋆
M̃k,h

||2∞
]

≤ H

√
Ek

[
sup
h∈H

||Q⋆
M⋆,h −Q⋆

M̃k,h
||2∞

]
= H

√
Ek

[
dQ⋆(M⋆,M̃k)

]
≤ H

√
D,

where the penultimate inequality follows from Jensen’s inequality and the final inequality follows
since M̃k achieves the rate-distortion limit.

For the remaining term, we have

Ek

[
V ⋆
M⋆,1 − V

π⋆

M̃k

M⋆,1

]
≤ H

√
D + Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣Q⋆
M̃k,h

(sh, a
⋆)−Q⋆

M⋆,h(sh, ah)
∣∣∣]]

= H
√
D + Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣Q⋆
M̃k,h

(sh, a
⋆)−Q⋆

M̃k,h
(sh, ah) +Q⋆

M̃k,h
(sh, ah)−Q⋆

M⋆,h(sh, ah)
∣∣∣]]

≤ H
√
D + Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣Q⋆
M̃k,h

(sh, ah)−Q⋆
M⋆,h(sh, ah)

∣∣∣]] ,

39



where the inequality follows since ah is drawn from the optimal policy of M̃k, π⋆
M̃k

, and so
Q⋆

M̃k,h
(sh, ah) ≥ Q⋆

M̃k,h
(sh, a

⋆). Repeating the identical argument from above yields

Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣Q⋆
M̃k,h

(sh, ah)−Q⋆
M⋆,h(sh, ah)

∣∣∣]] ≤ Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

||Q⋆
M⋆,h −Q⋆

M̃k,h
||∞

]]
≤ H

√
D.

Substituting back, we see that

Ek

[
V ⋆
M⋆,1 − V π(k)

M⋆,1

]
≤ Ek

[
E
ρ
π⋆
M̃k

[
H∑

h=1

∣∣∣max
a∈A

Q⋆
M⋆,h(sh, a)−Q⋆

M⋆,h(sh, ah)
∣∣∣]] ≤ 2H

√
D.

Thus, we may complete our bound as

Ek [∆k] ≤ Ek

[
V ⋆
M⋆,1 − V ⋆

M̃k,1
+ V ⋆

M̃k,1
− V π(k)

M̃k,1
+ V ⋆

M̃k,1
− V ⋆

M⋆,1 + V ⋆
M⋆,1 − V π(k)

M⋆,1

]
≤ Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1
+ V ⋆

M⋆,1 − V π(k)

M⋆,1

]
+ 2

√
D

≤ Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]
+ (2H + 2)

√
D.

Applying this upper bound on episodic regret in each episode yields

BAYESREGRET(K,π(1), . . . , π(K)) = E

[
K∑

k=1

Ek [∆k]

]

≤ E

[
K∑

k=1

Ek

[
V ⋆
M̃k,1

− V π(k)

M̃k,1

]]
+ 2K(H + 1)

√
D,

as desired.

J Proof of Lemma 3

To show Lemma 3, we prove the following more general result which applies whenever a distortion
function adheres to a specific functional form.

Let V, V̂ be two arbitrary random variables defined on the same measurable space (V,V) and define
the associated rate-distortion function as

R(D) = inf
V̂ ∈Λ(D)

I(V ; V̂ ) = inf
V̂ ∈Λ(D)

DKL(P((V, V̂ ) ∈ ·) || P(V ∈ ·)× P(V̂ ∈ ·)),

where the distortion function d : V × V → R≥0 has the form d(v, v̂) = ℓ(f(v), f(v̂)) for any two
known, deterministic functions, f : V → Z and a semi-metric ℓ : Z × Z → R≥0. Effectively, this
structural constraint says that our distortion measure between the original V and compressed V̂ only
depends on the statistics f(V ) and f(V̂ ). Under such a constraint, we may prove the following
lemma
Lemma 11. If D = 0 and V̂ achieves the rate-distortion limit, then we have the Markov chain
V → f(V ) → V̂

Proof. Assume for the sake of contradiction that there exists a random variable V̂ that achieves
the rate-distortion limit with D = 0 but does not induce the Markov chain V → f(V ) → V̂ .
Since mutual information is non-negative and I(V ; V̂ | f(V )) = 0 implies the Markov chain
V → f(V ) → V̂ , it must be the case that I(V ; V̂ | f(V )) > 0. Consider an independent random
variable V̂ ′ ∼ P(V̂ | f(V )) such that

I(V ; V̂ ′) = I(V ; V̂ )− I(V ; V̂ | f(V ))︸ ︷︷ ︸
>0

< I(V ; V̂ ) = R(D).
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Clearly, we have retained all bits of information needed to preserve f(V ) in V̂ ′, thereby achieving
the same expected distortion constraint. However, this implies that V̂ ′ achieves a strictly lower rate,
contradicting our assumption that V̂ achieves the rate-distortion limit. Therefore, it must be the
case that when D = 0 and V̂ achieves the rate-distortion limit, we have I(V ; V̂ | f(V )) = 0 which
implies the Markov chain V → f(V ) → V̂ .

Lemma 12. For each episode k ∈ [K] and for D = 0, let M̃k be a MDP that achieves the rate-
distortion limit of RQ⋆

k (D) with information source P(M⋆ | Hk) and distortion function dQ⋆ . Then,
we have the Markov chain M⋆ → Q⋆

M⋆ → M̃k, where Q⋆
M⋆ = {Q⋆

M⋆,h}h∈[H] is the collection of
random variables denoting the optimal action-value functions of M⋆.

Proof. Recall that our distortion function,

dQ⋆(M,M̂) = sup
h∈[H]

||Q⋆
M,h −Q⋆

M̂,h
||2∞ = sup

h∈[H]

max
(s,a)∈S×A

|Q⋆
M,h(s, a)−Q⋆

M̂,h
(s, a)|2,

only depends on the MDPs M and M̂ through their respective optimal action-value functions,
{Q⋆

M,h}h∈[H] and {Q⋆
M̂,h

}h∈[H]. Consequently, the claim holds immediately by applying Lemma
11 where f computes the optimal action-value functions of an input MDP for each timestep h ∈ [H]
and ℓ is the metric induced by the infinity norm on R|S|×|A|.

K Proof of Theorem 5

Our proof of Theorem 5 proceeds by leveraging Lemma 3 (instead of Fact 1) before following the
same style of argument as used in Theorem 3.

Theorem 11. For D = 0 and any prior distribution P(M⋆ ∈ · | H1) over tabular MDPs, if Γk ≤ Γ
for all k ∈ [K], then VSRL with distortion function dQ⋆ has

BAYESREGRET(K,π(1), . . . , π(K)) ≤ Õ
(√

Γ|S||A|KH

)
.

Proof. Starting with the information-theoretic regret bound in Corollary 2, observe that for M⋆ ∼
P(M⋆ ∈ · | H1), we have the Markov chain M⋆ → Q⋆

M⋆ → M̃1, by virtue of Lemma 3. By the
data-processing inequality, we immediately recover the following chain of inequalities:

RQ⋆

1 (D) ≤ I1(M⋆;M̃1) ≤ I1(M⋆;Q⋆
M⋆).

Recognizing that the optimal value functions are a deterministic function of the MDP M⋆ itself, we
have

I1(M⋆;Q⋆
M⋆) = Hk(Q

⋆
M⋆)−Hk(Q

⋆
M⋆ | M⋆) = Hk(Q

⋆
M⋆) = Hk(Q

⋆
M⋆,1, . . . , Q

⋆
M⋆,H) ≤

H∑
h=1

Hk(Q
⋆
M⋆,h),

where the final inequality follows by applying the chain rule of entropy and the fact that conditioning
reduces entropy, in sequence.

At this point, recalling the salient exposition in the proof of Theorem 3 concerning the use of metric
entropy for such function-valued random variables, we proceed to consider the εQ⋆-cover of the
interval [0, H] with respect to the L1-norm || · ||1, for some fixed 0 < εQ⋆ < H . Since, for a
sufficiently small choice of εQ⋆ , Q⋆

M⋆,h is well-approximated as a discrete random variable for any
h ∈ [H], we recall that the entropy of a discrete random variable X taking values on X is bounded as
H(X) ≤ log (|X |). Applying this upper bound and Lemma 9 in sequence, we have that

H∑
h=1

Hk(Q
⋆
M⋆,h) ≤ |S||A|H log

(
N (

εQ⋆

2
, [0, H], || · ||1)

)
≤ |S||A|H log

(
1 +

4H

εQ⋆

)
.
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Applying these upper bounds to the result of Corollary 5 and recalling that D = 0, we have

BAYESREGRET(K,π(1), . . . , π(K)) ≤

√
ΓK|S||A|H log

(
1 +

4H

εQ⋆

)
.
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