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Abstract

In lifelong reinforcement learning, agents must
effectively transfer knowledge across tasks while
simultaneously addressing exploration, credit as-
signment, and generalization. State abstraction
can help overcome these hurdles by compressing
the representation used by an agent, thereby re-
ducing the computational and statistical burdens
of learning. To this end, we here develop theory
to compute and use state abstractions in lifelong
reinforcement learning. We introduce two new
classes of abstractions: (1) transitive state abstrac-
tions, whose optimal form can be computed effi-
ciently, and (2) PAC state abstractions, which are
guaranteed to hold with respect to a distribution
of tasks. We show that the joint family of transi-
tive PAC abstractions can be acquired efficiently,
preserve near optimal-behavior, and experimen-
tally reduce sample complexity in simple domains,
thereby yielding a family of desirable abstractions
for use in lifelong reinforcement learning. Along
with these positive results, we show that there are
pathological cases where state abstractions can
negatively impact performance.

1. Introduction
Abstraction is a central representational operation for Re-
inforcement Learning (RL), enabling fast planning, long
horizon exploration, and effective generalization. Previ-
ous work focuses on two forms of abstraction: (1) State
abstraction, which groups together similar world-states to
form compressed descriptions of the environment (Andre
& Russell, 2002; Jong & Stone, 2005; Dietterich, 2000),
and (2) Action abstraction, which yields compact models of
temporally extended behavior by correlating sequences of
actions (Sutton et al., 1999; Hauskrecht et al., 1998). These
two methods of abstraction provide powerful tools for sim-
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Figure 1: We study which state abstraction functions (φ)
are useful for lifelong RL, wherein the agent must learn to
solve related tasks from the same distribution.

plifying complex problems, promising a principled method
for scaling RL. Lifelong RL is an especially challenging
learning setting, as learners also have to form models that
generalize across tasks. The tools of abstraction are partic-
ularly well-suited to assist in lifelong RL, as abstractions
capture relevant task structure to aid in information transfer.

State abstraction’s core operation is aggregation, encom-
passing functions that group together similar configurations
of the environment. These approaches are particularly effec-
tive when the environmental description of state is redundant
or contains irrelevant features. Prior work introduces state-
abstraction types that are guaranteed to preserve properties
about states they group together (Dean et al., 1997; Li et al.,
2006; Ferns et al., 2004; 2006; Even-Dar & Mansour, 2003;
Hutter, 2016; Abel et al., 2016). Such types are known
to possess several desirable properties, such as preserving
asymptotic convergence guarantees or facilitating the repre-
sentation of a near-optimal policy. It is unknown, however,
how they generalize beyond a single task or, more gener-
ally, affect reinforcement learning. Moreover, a previous
result introduced by Even-Dar & Mansour (2003) shows
that computing the maximally-compressing state abstraction
function from a class is NP-Hard, suggesting that achieving
good state abstractions is prohibitively difficult. Further, it
is unknown how a good state abstraction can be learned.

In this paper, we introduce new theory for computing and
using state abstractions in lifelong RL, pictured in Figure 1.
Our main contribution is the introduction of two new com-



State Abstractions for Lifelong Reinforcement Learning

plementary families of state abstraction that possess desir-
able properties:

1. Transitive state abstractions: A state-abstraction
type associated with a transitive predicate defined on
pairs of states.

2. PAC state abstractions: A state abstraction that
achieves correct clustering with high probability with
respect to a distribution over learning problems.

Section 3.1 introduces results on transitive state abstrac-
tions. We prove that transitive state abstractions are effi-
cient to compute, improving over existing NP-Hardness
results (Even-Dar & Mansour, 2003). Second, we prove
that there exist value-preserving transitive state abstractions.
Hence, transitive state abstractions are both efficient to com-
pute and can support near-optimal decision making. Lastly,
we prove the approximation ratio of compression of transi-
tive abstractions relative to their non-transitive counterparts.

Section 3.2 introduces results on PAC abstractions. First,
we prove a general sample bound for computing PAC state
abstractions in a lifelong setting. Second, we prove that
PAC abstractions can preserve near-optimal behavior.

Together, the joint family of transitive PAC state abstractions
are efficient to compute, can be estimated from a finite num-
ber of sampled and solved tasks, and preserve near-optimal
behavior in lifelong RL. To our knowledge these are the
first state abstractions to satisfy this collection of proper-
ties. We close with a negative result, however: PAC-MDP
algorithms (Strehl et al., 2009) such as R-Max (Brafman &
Tennenholtz, 2002) are not guaranteed to interact effectively
with an abstracted MDP, suggesting that additional work
is needed to combine this idea with efficient learning. Fi-
nally, we conduct several simple experiments with standard
algorithms to empirically corroborate the effects of state
abstraction on lifelong learning.

2. Background
First, we present our learning setting and other relevant defi-
nitions. We assume the traditional RL formulation, wherein
an agent interacts with a Markov Decision Process (Bellman,
1957) (MDP) to maximize long term expected reward. An
MDP is defined as a five tuple, 〈S,A,R, T , γ〉, where S is a
set of states,A is a set of actions,R : S ×A 7→ [0,RMAX]
is a reward function, with RMAX denoting the maximum
possible reward achievable, T : S ×A 7→ Pr(S) is a tran-
sition function, denoting a probability distribution over next
states given a previous state and action, and γ ∈ [0, 1) is
a discount factor, indicating how much the agent prefers
short-term to long-term rewards.

The solution to an MDP is a policy, denoted π : S 7→ Pr(A),

indicating an action selection strategy. The goal of the agent
is to take actions (that is, compute a policy) that maximizes
long term expected reward. Of particular interest is the
value function, which defines optimal behavior, given by the
classic Bellman Equation:

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)
)
.

Also of interest is the optimal action-value function:

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)V ∗(s′). (1)

Finally, we denote the Q function under a policy π in MDP
M as QπM (and similarly, V πM ):

QπM (s, a) = RM (s, a) + γ
∑
s′

TM (s, a, s′)V πM (s′). (2)

We let VMAX denote an upper bound on the maximum
possible value achievable, which can be set to RMAX

1−γ in the
absence of other constraints. For more background on RL,
see Sutton & Barto (1998) and Kaelbling et al. (1996), and
for background on MDPs, see Puterman (2014).

We also make use of two PAC-MDP (Strehl et al., 2009) al-
gorithms from prior literature: R-Max (Brafman & Tennen-
holtz, 2002) and Delayed Q-Learning (Strehl et al., 2006).
A PAC-MDP algorithm comes with a guarantee that it will
only make a polynomial number of mistakes with high prob-
ability, thereby ensuring that it explores the MDP efficiently.
R-Max is a model-based algorithm that uses the principle of
optimism under uncertainty to determine where to explore.
Delayed Q-Learning is a model free algorithm that also
makes heavy use of optimism in its decision making.

Of growing interest in the RL literature is lifelong learning,
in which an agent must interact with and solve many tasks
over the course of a lifetime, as in Brunskill & Li (2014);
Isele et al. (2016); Walsh et al. (2006) and Wilson et al.
(2007). We offer the following definition of this setting:

Definition 1 (Lifelong RL): In Lifelong RL, the agent
receives S,A, s0 ∈ S, horizon H , discount fac-
tor γ, and a fixed but unknown distribution over
reward-transition function pairs, D. The agent sam-
ples (Ri, Ti) ∼ D, and interacts with the MDP
〈S,A,Ri, Ti, γ〉 for H timesteps, starting in state s0.
After H timesteps, the agent resamples from D and
repeats.

Lifelong RL presently a particularly difficult set of chal-
lenges as it forces agents not only to generalize within an
MDP, but also across the distribution of MDPs. The setting
is practically relevant to any application where an agent
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Name Predicate Value Loss Transitive

φQ∗ maxa |Q∗(s1, a)−Q∗(s2, a)| = 0 0 yes

φa∗ a∗1 = a∗2 ∧ V ∗(s1) = V ∗(s2) 0 yes

φπ∗ π∗(s1) = π∗(s2) 0 yes

φQ∗ε maxa |Q∗(s1, a)−Q∗(s2, a)| ≤ ε 2εRMAX
(1−γ)2 no

φmult maxa

∣∣∣ Q∗(s1,a)∑
bQ
∗(s1,b)

− Q∗(s2,a)∑
bQ
∗(s2,b)

∣∣∣ ≤ ε 2ε |A|RMAX+k
(1−γ)2 no

φbolt maxa

∣∣∣ eQ
∗(s1,a)∑

b e
Q∗(s1,b) − eQ

∗(s2,a)∑
b e
Q∗(s2,b)

∣∣∣ ≤ ε 2ε (|A|RMAX+εk+k)
(1−γ)2 no

φQ∗d ∀a : dQ
∗(s1,a)
d e = dQ

∗(s2,a)
d e 2dRMAX

(1−γ)2 yes

Table 1: A few existing state abstraction types (Li et al., 2006; Abel et al., 2016) and our transitive Q∗d abstraction type.

must learn to solve a series of related tasks, as is needed
when subtle aspects of the world’s causal dynamics or task
change over time. Naturally, lifelong RL is closely related
to the objectives and models of transfer learning (Taylor &
Stone, 2009; Thrun, 1996) and multitask RL Tanaka & Ya-
mamura (2003); Brunskill & Li (2013). For more motivation
and background on lifelong RL, see Section 1 of Brunskill
& Li (2015).

2.1. State Abstraction

The goal of state abstraction is to reduce the size of the envi-
ronmental state space by grouping together similar states in
a way that reduces the complexity of the underlying prob-
lem being solved, building on the early work of Bertsekas
& Castanon (1989); Mendelssohn (1982) and Reyman &
van der Wal (1988). Typical sample and computational com-
plexity results depend on the size of the state space of the
underlying MDP (Littman et al., 1995); thus, opportunities
to shrink the state space can lead to a dramatic reduction in
problem solving time, as in Bulitko et al. (2005) and Anand
et al. (2016). The difficulty is that abstraction throws away
information: learning to throw away the right information
is a challenging problem. We define a state-abstraction type
with respect to a two-argument predicate on state pairs:

Definition 2 (State-Abstraction Type): A state-
abstraction type is a collection of functions φ : S 7→
Sϕ associated with a fixed predicate on state pairs:

pM : S × S 7→ {0, 1}, (3)

such that when φ clusters state pairs in MDP M , the
predicate must be true for that state pair:

φ(s1) = φ(s2) =⇒ pM (s1, s2). (4)

Li et al. (2006) provide a general characterization of state-
abstraction space along with several results clarifying the
impact state abstractions have on learning. We adopt much
of their perspective and an updated version of their notation
here. Some of the state-abstraction types they cover are
summarized in Figure 1.

In follow up work, Abel et al. (2016) extend their state-
abstraction framework to approximate abstraction, in which
the predicates that encode a particular type can be predicates
that denote an approximate property. For instance, in the
exact setting, one commonly studied predicate is defined as
follows:

pM (s1, s2) , max
a
|Q∗M (s1, a)−Q∗M (s2, a)| = 0. (5)

In the approximate relaxation, the predicate is defined with
a small constant ε ∈ [0,VMAX]:

pεM (s1, s2) , max
a
|Q∗M (s1, a)−Q∗M (s2, a)| ≤ ε. (6)

In general, computing the approximate state abstraction
that induces the smallest possible abstract state space for
that predicate is NP-Hard (Even-Dar & Mansour, 2003).
Indeed, this result seems to limit the potential utility of state
abstractions, as reducing the size of the abstract state space
is the main goal of state abstraction; a smaller state space is
desirable as the reduced MDP (typically) requires a lower
sample and computational complexity to solve.

We here introduce transitive state abstractions, a restricted
class of approximate state abstractions that can be computed
efficiently. Concretely, this transitivity guarantees that the
predicate p associated with the type satisfies the implica-
tion [p(s1, s2) ∧ p(s2, s3)] =⇒ p(s1, s3). Many existing
state-abstraction types are transitive. However, all known
approximate abstraction types, such as those introduced
by Abel et al. (2016), are not. To this end, we introduce a
transitive modification of the approximate state-abstraction
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types. Though the technique does extend to many approxi-
mate state abstractions, we focus our efforts here onQ-value
similarity:

Definition 3 (φQ∗d): For a given d ∈ [0,VMAX], the
φQ∗d denotes a state-abstraction type with predicate:

pdM (s1, s2) , ∀a :

⌈
Q∗M (s1, a)

d

⌉
=

⌈
Q∗M (s2, a)

d

⌉

Intuitively, the abstraction discretizes the interval from
[0,VMAX] by buckets of size d (akin to ε in Equation 6).
Then, a pair of states satisfy the predicate if the Q-values
for all actions fall in the same discrete buckets. Note that
this predicate is transitive by the transitivity of being-in-the-
same-bucket. As we will show in the next section, the above
type preserves near optimal behavior as a function of d, and
MDP-specific parameters like γ and RMAX.

Our main goal is to bring the tools of state abstractions to
bear on lifelong RL. Other work has undertaken this en-
deavor, such as Guestrin et al. (2003); Walsh et al. (2006)
and Jong & Stone (2005), and an earlier version of our
work (Abel et al., 2017). We here build on the principles es-
tablished by this work with a new family of abstractions that
are guaranteed to hold with high probability over the task
distribution D, inspired by PAC learning (Valiant, 1984):

Definition 4 (PAC State Abstraction): A PAC state ab-
straction φδp is a state-abstraction function belonging
to type φp such that, for a given δ ∈ (0, 1], and a given
distribution over MDPs D, the abstraction groups to-
gether nearly all state pairs for which the predicate p
holds with high probability over the distribution.

More formally, for an arbitrary state pair (s1, s2), let
ρpx denote the predicate that is true if and only if p is
true over the distribution with probability 1− x:

ρpx(s1, s2) , Pr
M∼D

{pM (s1, s2) = 1} ≥ 1− x. (7)

We say φδp is a PAC state abstraction if there exists a
small constant ε ∈ (−δ, δ) such that, for all state pairs
s1, s2:

Pr
{
ρpδ+ε(s1, s2) ≡ φδp(s1) = φδp(s2)

}
≥ 1− δ.

Intuitively, we can’t expect to come up with a single abstrac-
tion that captures the changing landscape of state-relations
under a given predicate p and task distribution. Instead,
we focus on predicates that hold with high probability over
the distribution ρpδ , and seek an abstraction that probably

approximately captures all of those state-pair relations. Con-
sequently we group most states that can be grouped across
most MDPs in the distribution.

We now present our main theoretical results on each of the
new abstraction types.

3. Theory
Our main results summarize how to bring efficiently com-
putable, value-preserving state abstractions into the lifelong
RL setting. We first analyze transitive abstraction, then PAC
abstractions. All proofs are found in the Appendix.

3.1. Transitive State Abstractions

We first show that transitive state abstractions can be com-
puted efficiently.

Theorem 3.1 (Efficient Abstractions). Consider any tran-
sitive predicate on state pairs, p, that takes computational
complexity cp to evaluate for a given state pair. The state
abstraction type φp that induces the smallest abstract state
space can be computed in O(|S|2 · cp).

The intuition here is that we can shave off many computa-
tions by leaning heavily on transitivity. Any one query we
make of a state pair predicate can yield information about
all connected state pairs. Critically, the complexity of cp
dictates the overall complexity of computing φp.

From Table 1, note that known approximate state-abstraction
types are not transitive. Hence, our next result shows that
there exists an approximate state-abstraction type—with a
transitive predicate—with bounded value loss:

Theorem 3.2. The φQ∗d abstraction type is a subclass of
φQ∗ε , studied by Abel et al. (2016) and Hutter (2016), with
d = ε, and therefore, for a single MDP:

V ∗(s0)− V
πφQ∗

d (s0) ≤
2dRMAX

(1− γ)2 . (8)

Thus, the φQ∗d class represents a reasonable candidate for
state abstractions as it can be computed efficiently and
posses a value loss that scales according to a free parameter,
d. When d = 0, the value loss is zero, and the abstraction
collapses to the typical φQ∗ irrelevance abstraction from Li
et al. (2006). We note that predicates defining other existing
abstraction types, such as φa∗ (Li et al., 2006), also have
natural translations to transitive predicates using the same
discretization technique. While most of our main theoretical
results are agnostic to choice of predicate, we concentrate
on Q based abstractions due to their simplicity and utility.
Notably, we never require exact knowledge of Q∗: we al-
ways approximate it based on knowledge of prior tasks. Our
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results shed light on when it is possible to employ approxi-
mate knowledge of this kind for use in decision making.

Recall, however, that the primary goal of state abstraction
is to reduce the size of the agent’s representation over prob-
lems of interest. A natural question arises: if one were
to solve the full NP-Hard problem of computing the max-
imally compressing state abstraction of a particular class,
how much more compression can be achieved over the tran-
sitive approximation? Intuitively: Is the transitive abstrac-
tion going to compress the state space? The following result
addresses this question.

Theorem 3.3 (Abstract State Space Size). For a given d,
the function belonging to the transitive abstraction type
φQ∗d that induces the smallest possible abstract state space
size is at most 2|A| times larger than that of the maximally
compressing instance of type φQ,ε, for d = ε. Thus, let-
ting Sd denote the abstract state space associated with the
maximally compressing φQ∗d , and letting Sε denote the ab-
stract state space associated with the maximally compress-
ing φQε ,:

|Sε| · 2|A| ≥ |Sd|. (9)

The above result shows that the non-transitive, maximally
compressing state space size can in fact be quite smaller
than the transitive approximation (by a factor of 2|A|).

3.2. PAC Abstractions

Our second collection of results focus on pulling state ab-
stractions out of the single MDP setting and into the lifelong
setting via PAC abstractions. We first show that they achieve
a probabilistic value loss:

Corollary 3.3.1 (PAC Value Loss). Consider any state-
abstraction type φp with value loss τp, that is, in the tradi-
tional single task setting:

∀s∈S : V ∗(s)− V πφ∗p (s) ≤ τp. (10)

Then, the PAC abstraction φδp, in the lifelong setting, has
expected value loss:

∀s∈S : E
M∼D

[
V ∗M (s)− V

πφ∗p
M (s)

]
≤

ε(1− 3δ)τp + 3δVMAX. (11)

The value loss is actually quite high, as we can lose
3δVMAX. Accordingly, we must be careful in selection
of δ. This bound is not tight, however, so in general the
value loss may be lower.

Next, we show how to compute PAC abstractions from a
finite number of sampled tasks.

Theorem 3.4 (PAC Abstraction Sample Bound). Let Ap be
an algorithm that given an MDP M = 〈S,A,R, T , γ〉 as
input can determine if p(s1, s2) is true for any pair of states,
for any state abstraction type.

Then, for a given δ ∈ (0, 1] and ε ∈ (−δ, δ), we can com-

pute a PAC abstraction φ̂δp after m ≥ ln( 2
δ )

ε2 sampled MDPs
from D.

Note that this result assumes oracle access to the true pred-
icate, p(s1, s2), during the computation of φ̂δp. The analo-
gous case in which p can only be estimated via an agent’s
interaction with its environment is a natural next step for
future work. We have explored this result, but it requires
care and attention to detail which we defer for another time.

Given the ability to compute PAC abstractions from a fi-
nite number of samples, we now shed some initial light
on the interplay between state abstractions and PAC-MDP
algorithms for efficient RL.

Theorem 3.5. Consider an MDP M and an instance of
the classical model-based algorithm, R-Max (Brafman &
Tennenholtz, 2002), that breaks ties using round-robin selec-
tion over actions. This algorithm is PAC-MDP in the raw
state space. Next, pair a domain with any state-abstraction
function φ. If R-Max interacts with M by projecting any
received state s through φ, then R-Max is no longer guaran-
teed to be PAC-MDP in M . In fact, the number of mistakes
made by R-Max can be arbitrarily large.

The above result is a surprising negative result—it suggests
that there is more to the abstraction story than simply pro-
jecting states into the abstract. Specifically, it is indicative
of future work that sheds light how we can form abstractions
that preserve the right kinds of guarantees.

To communicate this piece more directly, we conduct a
simple experiment in the 3-chain problem introduced in the
proof of Theorem 3.5. Here we run R-Max and Delayed Q-
Learning with and without φQ∗ε , with abstraction parameter
ε = 0.01. Each agent is given 250 steps to interact with
the MDP. The results are shown in Figure 2. R-Max, paired
with abstraction φQ∗ε , fails to learn a anywhere close to a
near-optimal policy. In fact, we can control a parameter
in the MDP such that R-Max performs arbitrarily bad. It
remains an open question as to whether φ preserves the
PAC-MDP property for Delayed Q (Strehl et al., 2006).

To explicate this point further, we next show that projecting
an MDP to the abstract state space via φ and learning with
Mφ is non-identical to learning withM and projecting states
through φ:

Corollary 3.5.1. For any RL algorithm A whose policy
updates during learning and an arbitrary state abstraction
φ.
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Let Aφ denote the algorithm yielded by projecting all in-
coming states to φ(s) before presenting them to A , and
let Mφ = 〈Sφ,A, Tφ,Rφ, γ〉, denote the abstract MDP
induced by φ on M , where:

Sφ = {φ(s) : ∀s∈S},
Rφ(φ(s), a) =

∑
g∈φ−1(φ(s)))

w(g)R(g, a),

Tφ(s, a, s′) =
∑

g∈G(s)

∑
g′∈G(s′)

Tφ(g, a, g′)w(g),

with w(s) is a fixed weighting function and G(s) =
φ−1(φ(s)). That is, G(s) gets all of the true environmental
states in the same cluster as s.

The process yielded by Aφ interacting with M is not identi-
cal to A interacting with Mφ. That is, the expected trajec-
tory taken by the agent is not the same in the two situations.
Formally:

EA [st | s0, π] 6= EAφ
[st | s0, π] , (12)

where st is the state the agent arrives in after t time steps.

Again, we find a peculiarity to the abstraction story: ab-
stracting during interaction is distinct from offline abstrac-
tion. This result is reminiscent of parts of Theorem 4 and
Theorem 5 from Li et al. (2006). In the future, we aim to
provide a cohesive framework that preserves both PAC and
convergence guarantees, whether the abstractions are used
offline or during interaction.

To summarize our theorems: any state abstraction that be-
longs to both the transitive class and the PAC class is: (1)
efficient to compute, (2) can be estimated from a polynomial
number of sampled and solved problems, (3) and preserves
near-optimal behavior in the lifelong RL setting. The iden-
tification of such a class of desirable state abstractions for
lifelong RL is the main contribution of this paper. We fur-
ther uncover a peculiar shortcoming of state abstractions in
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Figure 2: Results averaged over 50 runs on the pathological
3 chain MDP introduced in the proof of Theorem 3.5.

the final two results, raising open questions about how to
generalize state abstractions to work well with PAC-MDP
algorithms.

We now move on to our experiments.

4. Experiments
We conduct two sets of simple experiments with the goal of
illuminating how state abstractions of various forms impact
learning and decision making.

• Learning with and without φδp: We investigate the
impact of different types of abstractions on Q-
Learning (Watkins & Dayan, 1992) and Delayed Q-
Learning (Strehl et al., 2006) in different lifelong RL
task distributions.

• Planning with and without φδp: Second, we explore the
impact of planning via Value Iteration (Bellman, 1957)
with and without a state abstraction, as suggestive of
the potential to accelerate model-based algorithms with
good state abstractions.

In each case, we compute various types of φδp according to
the sample bound from Theorem 3.4, with δ = 0.1, and the
PAC parameter ε = 0.1 (the worst case ε). We experiment
with (φδQ∗), approximate (φδQ∗ε ), and transitive (φδQ∗d) state
abstractions from the Q similarity classes across each of the
above algorithms. We experiment with probably approxi-
mate Q based abstractions because their value loss bound
is known, tight, and a small function of the approximation
parameter, and (2) They have known transitive variants and
are thus simple to compute, as we show in Theorem 3.1.
Further, if a Q∗ based abstraction presents no opportunity
to abstract (the reward or transition function change too
dramatically across tasks), then Theorem 3.4 tells us that
we will abstain from abstracting.

4.1. Lifelong RL

Each learning experiment proceeds as follows: for each
agent, at timestep zero, sample a reward function from the
distribution. Then, let the agent interact with the result-
ing MDP for 100 episodes. When the last episode finishes,
reset the agent to the start state s0, and repeat. All learn-
ing curves are averaged over samples from the distribution.
Thus, improvements to learning from each φ are improve-
ments averaged over the task distribution. In all learning
plots we report 95% confidence intervals over the sampling
process (both samples from the distribution and runs of each
agent in the resulting MDP).

Color Room: We first conduct experiments testing Q-
Learning and Delayed Q Learning on an 11 × 11 Four
Room variant, adapted from Sutton et al. (1999). In the
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Figure 3: Cumulative reward averaged over 100 task samples from the Colored Four Rooms task distribution. Learning
algorithms were given 100 episodes of 250 steps to learn, paired with a variety of different state-abstraction types.

task distribution, goal states can appear in exactly one of
the furthest corner of each of the three non-starting rooms
(that is, there are three possible goal locations) uniformly at
random. Transitions into a goal state yield +1 reward with
all other transitions providing +0. Goal states are set to
terminal. To explore the impact of abstraction, we augment
the problem representation by introducing an irrelevant di-
mension: color. Specifically, each cell in the grid can have
a color red, blue, green, or yellow. All cells are initially
red. The agent is given another action, paint, that paints
the entire set of cells to one of the four colors uniformly at
random. No other action can change the color of a cell. The
color has no impact on either reward or transitions, and so
is fundamentally irrelevant in decision making. We are thus
testing the hypothesis as to how effectively the sample based
PAC abstractions can pick up on the irrelevant characteris-
tics and still support efficient but high performance learning.
Given the inherent structure of the Four Rooms domain we
also experiment with an intuitively useful hand-coded state
abstraction (φh) that assigns an abstract state to each room
(for a total of four abstract states). The agents all start in the
bottom left cell.

Figure 3 shows results for algorithms run on the Colored
Four Rooms task distribution. First, notice that φh, the hand
coded abstraction, is disastrous for both learning algorithms.
Despite employing a seemingly reasonable decomposition
of the state space, the agent fails to come close to the per-
formance of the baseline agent. We draw a parallel between
these results and those presented in our previous work (Abel
et al., 2017), where we identify the existence of cases where
the benefits of generalization that come with state abstrac-
tions are accompanied by more challenging exploration and
credit-assignment problems. Conversely, for Q-learning
we find that all three PAC abstractions achieve statistically
significant improvement in cumulative reward, averaged
across 100 task samples. Notably, the slope of the learning

curves is roughly equivalent. We conclude that all of the
algorithms are learning policies of roughly similar value
(except Q-Learning), but the abstraction learners find these
policies more quickly. In the case of Q-Learning, the PAC
abstractions find even further improvement over the baseline
learner, both in terms of learning speed and the value of the
policy used near the end of learning.

Four Room: We conduct a final experiment in a larger
30 × 30 Four Rooms variant in which color and paint
are removed to explore the degree to which the irrelevant
variables explain the learning improvement found in the pre-
vious experiment. We evaluate Delayed-Q Learning again
with the same state abstractions, again with 100 episodes,
with 500 steps per episode. Here we find that the approxi-
mate abstraction φQ∗ε devastates learning – a curious result.
Due to the transitive nature of φQ∗d we tend to find that it in-
duces contiguous abstract state spaces (state clusters where
ground states can all easily transition to one another). How-
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Figure 4: Delayed Q-Learning on a 30x30 Four Rooms
task distribution without the extraneous irrelevant feature of
color and the paint action.



State Abstractions for Lifelong Reinforcement Learning

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Upworld Grid Width

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pl
an

ni
ng

 T
im

e 
(s

ec
on

ds
)

Planning Time in Upworld with a PAC Abstraction
vi-ϕQ *

d

vi

(a) Planning in Upworld

3.0 3.5 4.0 4.5 5.0 5.5 6.0
Trench Grid Width

0

2

4

6

8

10

12

Pl
an

ni
ng

 T
im

e 
(s

ec
on

ds
)

Planning Time in Trench with a PAC Abstraction
vi-ϕQ *

d

vi

(b) Planning in Trench

Figure 5: Planning time for Value Iteration with and without a state abstraction as the environmental state space grows. In
all cases, the value of the computed policy is identical.

ever, the same does not tend to hold for φQ∗ε . So, we suspect
there is a peculiar yet catastrophic combination occurring
between the specific learning updates of Delayed-Q and
φQ∗ε , particularly when φQ∗ε is doing more than throwing
away irrelevant state variables as in the Color problem. In
general, it us unknown whether state abstractions cooperate
with PAC-MDP algorithms like Delayed-Q, an area we hope
to clarify in future work.

4.2. Planning

To give further evidence of the potential benefits offered
by state abstraction we conduct two simple planning ex-
periments. Motivated by the work on planning with state
abstractions (Anand et al., 2016; 2015; Jiang et al., 2014),
we here show the impact of giving Value Iteration a state
abstraction in two simple problems. The first is the 10× 30
Upworld grid problem from Abel et al. (2016). The second
is the Trench problem from Abel et al. (2015), in which the
agent must seek out a block, pick it up, carry it to a trench,
place the block in the trench, and walk across the block to
the goal. In each case, we vary the size of the state space
by changing the width of the grid. In Upworld, this range is
from 3 to 20, while in Trench the range is from 3 to 6.

Figure 5 shows the planning time taken compared to the size
of the problem for Value Iteration. The results are expected:
in both Upworld and the Trench problem, there are opportu-
nities to abstract aggressively, thereby significantly lowering
the computational burden of planning. These results sug-
gest that future model-based RL algorithms employing the
appropriate abstractions can plan efficiently.

We make all our code publicly available for reproduction of
results and extension.1

1https://github.com/david-abel/rl_
abstraction

5. Conclusion
In this work, we bring state abstraction theory out of the
traditional single task setting and into lifelong RL. We intro-
duce two new complementary families of state abstractions,
(1) Transitive state abstractions, and (2) PAC abstractions.
Together, they offer the first state abstractions usable for life-
long RL that can be feasibly obtained while still preserving
near-optimal behavior.

Additionally, we draw attention to several shortcomings of
learning with abstractions, building on those studied by Li
et al. (2006) and Gordon (1996), suggesting pathways for
realizing the full potential of the abstraction framework.
Further, we explore our theoretical findings with a collec-
tion of simple experiments, showcasing the benefits and
pitfalls of learning and planning with various types of state
abstractions.

In the future, we hope to explore the interplay between state
and action abstraction, thereby opening further opportuni-
ties to learn and employ knowledge for quick inference and
targeted exploration in challenging lifelong RL problems.
Lastly, our work concentrates on finite, tabular MDPs. A
natural direction for future research is to use the insights
developed here in simple environments to identify abstrac-
tion methods that can facilitate efficient learning in more
challenging domains.
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We here include proofs omitted from the paper.

Theorem 3.1 (Efficient Abstractions). Consider any tran-
sitive predicate on state pairs, p, that takes computational
complexity cp to evaluate for a given state pair. The state
abstraction type φp that induces the smallest abstract state
space can be computed1 in O(|S|2 · cp).

Proof. Let cp denote the computational complexity associ-
ated with computing the predicate p for a given state pair.
Consider the algorithm consisting of the following four rules
for constructing abstract clusters (which define the abstract
states) using queries to each of the |S|2 state pairs. Let
(si, sj) denote the current state pair:

1. If p(si, sj) is true, and neither state is in an abstract
cluster yet, make a new cluster consisting of these two
states.

2. If p(si, sj) is true and only one of the states is already
in a cluster, add the other state to the existing cluster.

3. If p(si, sj) is true and both si and sj are in different
cluster, merge the clusters.

4. If p(si, sj) is false, add each state not yet in a cluster
to its own cluster.

Running this algorithm makes one query per state pair, of
which there are |S|2. Thus, the complexity is O

(
|S|2 · cp

)
.

From steps 1-3, after iterating through the possible state
pairs, there cannot exist a state pair (sx, sy) such that
p(sx, sy) is true but sx and sy are in different clusters. Fur-
ther, by transitivity, when we apply the cluster merge in step
3, we are guaranteed that every state pair in the resulting
cluster necessarily satisfies the predicate. Thus, we compute
the smallest clustering definable by p.

Theorem 3.2. The φQ∗d abstraction type is a subclass of
φQ∗ε , studied by Abel et al. (2016) and Hutter (2016), with

1Notably, the complexity of cp dictates the overall complexity
of computing φp.

d = ε, and therefore, for a single MDP:

V ∗(s0)− V
πφQ∗

d (s0) ≤
2dRMAX

(1− γ)2
. (1)

Proof. For any two state-action pairs that satisfy the predi-
cate φ∗d, we know by definition of the predicate that for each
action a, there exists a Qlower such that:

Qlower ≤ Q(s1, a) ≤ Qlower + d,

Qlower ≤ Q(s2, a) ≤ Qlower + d.

Therefore, for each action a:

|Q(s1, a)−Q(s2, a)| ≤ d. (2)

Therefore, φ∗Q,d is a subclass of φ∗Q,ε.

Theorem 3.2 (Abstract State Space Size). For a given d,
the function belonging to the transitive abstraction type
φQ∗d that induces the smallest possible abstract state space
size is at most 2|A| times larger than that of the maximally
compressing instance of type φQ,ε, for d = ε. Thus, let-
ting Sd denote the abstract state space associated with the
maximally compressing φQ∗d , and letting Sε denote the ab-
stract state space associated with the maximally compress-
ing φQε ,:

|Sε| · 2|A| ≥ |Sd|. (3)

Proof. Let M be an arbitrary MDP. Consider a set of states
S̃ ⊂ S clustered together under φQ∗ε and, in particular,
consider the Q-values of all states in S̃ for a particular
action, a ∈ A. Note that, by construction of φQ∗ε , for any

∀s,s′∈S̃ : |Q(s, a)−Q(s′, a)| ≤ ε,

Recall that, intuitively, φQ∗d is a discretization of the interval
[0,VMAX] where d controls the placement of boundaries,
forming buckets of Q-values. The Q-values for all states in
S̃ and for action a reside in a single sub-interval of length ε.

Letting d = ε, the placement of boundaries that form φQ∗d
could break the ε-interval of Q-values for the non-transitive
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cluster S̃ no more than once, resulting in the creation of
at most two new state clusters in φQ∗d . Repeating the pro-
cess ∀a ∈ A, these separations within the original clus-
ter compound, resulting in at most 2|A| such subdivisions
and, accordingly, 2|A| clusters in φQ∗d for each cluster in
φQ∗ε .

Corollary 3.3.1 (PAC Value Loss). Consider any state-
abstraction type φp with value loss τp, that is, in the tradi-
tional single task setting:

∀s∈S : V ∗(s)− V πφ∗p (s) ≤ τp. (4)

Then, the PAC abstraction φδp, in the lifelong setting, has
value loss:

E
M∼D

[
V ∗M (s)− ∀s∈S : V

πφ∗p
M (s)

]
≤

ε(1− 3δ)τp + 3δVMAX. (5)

Proof. By definition of PAC abstractions, with probability
1 − δ, the abstraction function φδp aggregates iff ρpδ+ε, for
some small ε ∈ (−δ, δ).

Then, with probability 1 − δ, there is at least a 1 − δ − ε
chance that the predicate holds for a particular state, by
definition of ρpδ . Thus, by definition of ρpδ , with probability
(1− δ)(1− δ−ε), the state abstraction correctly aggregates,
and consequently the inherited value loss τp bound holds. If
the abstraction incorrectly aggregates, the value loss can be
up to VMAX.

Letting ε = δ, we see that the PAC loss is at worst upper
bounded by a convex mixture of τp with probability (1−3δ),
and with probability 3δ, is VMAX. Thus, the value loss of
φδp is:

∀s∈S : E
M∼D

[
V ∗M (s)− V

πφ∗p
M (s)

]
≤

ε(1− 3δ)τp + 3δVMAX. (6)

Theorem 3.4 (PAC Abstraction Sample Bound). Let Ap be
an algorithm that given an MDP M = 〈S,A,R, T , γ〉 as
input can determine if p(s1, s2) is true for any pair of states,
for any state abstraction type.

Then, for a given δ ∈ (0, 1] and ε ∈ (−δ, δ), we can com-

pute φ̂δ+εp after m ≥ ln( 2
δ )

ε2 sampled MDPs from D.

Proof. We are given as input a δ ∈ (0, 1], a distribution over
MDPs D, and the algorithm Ap which, given an MDP M
and a state pair outputs pM (s, s′).

Consider an arbitrary pair of states s and s′. For m sampled
MDPs, the algorithm Ap can produce a sequence of m
predicate evaluations:

p1(s, s
′), · · · , pm(s, s′). (7)

Let p̂ be the empirical mean over the predicate sequence:

p̂ =
1

m

m∑
i=1

pi(s, s
′). (8)

The clustering algorithm is quite simple: for our input δ ∈
(0, 1], cluster all state pairs (s, s′) such that p̂(s, s′) ≥ 1− δ
after m samples.

We now prove that, for a particular setting of m, the result-
ing cluster assignments constitute a state abstraction that
clusters a pair of states only if the predicate is true with high
probability.

First, let p denote the probability that p is true over the
distribution:

p(s, s′) = Pr
M∼D

{p(s, s′) = 1}. (9)

Using Hoeffding’s bound, we upper bound the probability
that p̂ deviates from p by more than some small ε ∈ (0, δ):

Pr {|p̂(s, s′)− E [p̂(s, s′)]| ≥ ε} (10)

=Pr {|p̂(s, s′)− p(s, s′)| ≥ ε} ≤ 2e−2mε
2

. (11)

Thus, for δ = 2e−2mε
2

:

Pr {|p̂(s, s′)− p(s, s′)| < ε} > 1− δ. (12)

Rewriting:

Pr {|p̂(s, s′)− p(s, s′)| < ε} > 1− δ (13)
⇐⇒ Pr {−ε < p̂(s, s′)− p(s, s′) < ε} > 1− δ, (14)

By algebra, note that, when m ≥ ln 2
δ

ε2 , the condition of
Equation 12 holds.

Let ρpδ denote the predicate that is true if and only if p is
true over the distribution with high probability for a given δ:

ρpδ(s1, s2) =

{
1 p ≥ 1− δ
0 otherwise.

(15)

Now, we form our state abstraction under the following rule:

φ̂δp(s1) = φ̂δp(s2) ≡ p̂(s, s′) > 1− δ. (16)

If, after m samples, p̂ were identical to p, then we would
have:

∀s,s′ : Pr
M∼D

{ρpδ(s, s
′) ≡ φ̂δp(s1) = φ̂δp(s2)} ≥ 1−δ. (17)
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Hence, p̂ deviates from p by at most ε with probability 1− δ.
Thus, for some ε ∈ (−δ, δ), p̂ + ε = p. Therefore, the
clustering rule defined by Equation 16 ensures there exists
an ε such that, with high probability, we cluster according
to:

∀s1,s2 : ρpδ+ε(s1, s2) ≡ φ
δ
p(s1) = φδp(s2). (18)

We conclude that, for m ≥ ln 2
δ

ε2 sampled and solved MDPs,
we compute a lifelong PAC state abstraction φ̂δp.

Theorem 3.5. Consider an MDP M and an instance of R-
Max (Brafman & Tennenholtz, 2002) that breaks ties using
round-robin selection over actions. This algorithm is PAC-
MDP in the raw state space. Next, pair a domain with any
state-abstraction function φ. If R-Max interacts with M by
projecting any received state s through φ, then R-Max is
no longer guaranteed to be PAC-MDP in M . In fact, the
number of mistakes made by R-Max can be arbitrarily large.

Proof. Consider the simple three state chain:

s0 s1 g

+κ +κ +RMAX

The agent has three actions, left, right, and loop,
associated with their natural effects (left in s0 is a self
loop with reward 0, while right moves the agent to s1,
and so on).

In states s0 and s1, let the reward for loop be some small
constant κ, and let the loop action in s3 yield RMAX
reward.

Let ε = 0.1, γ = 0.95, s0 define the initial state, and
κ = 0.001. Then

∀s∈{s0,s1,s2} : max
a1,a2

Q∗(s, a1)−Q∗(s, a2) ≤ ε.

Therefore, for ε = 0.1, a valid clustering assigns φ(s0) =
φ(s1). The R-Max knownness parameter for a state-action
pair is given as m.

To break ties, we suppose R-Max chooses actions according
to a round-robin policy, starting with action left. Thus,
in the abstract, R-Max first chooses left, then right, then
self loop, then left, right, self loop, and so on, until each
state-action pair is known.

In the above problem, this sequence of actions will never
lead the agent out of state s0 or s1. Therefore, after m exe-
cutions of these three actions across states s0 and s1, R-Max

with φ will compute a transition model that never includes
the ability to transition to g. Further, the action loop will
have the largest reward associated with it—κ, a reward cho-
sen to be arbitrarily small—which is thus arbitrarily worse
than the goal reward. So, R-Max will make an unbounded
number of mistakes.

Corollary 3.5.1. For any RL algorithm A whose policy
updates during learning and an arbitrary state abstraction
φ.

Let Aφ denote the algorithm yielded by projecting all in-
coming states to φ(s) before presenting them to A , and
let Mφ = 〈Sφ,A, Tφ,Rφ, γ〉, denote the abstract MDP
induced by φ on M , where:

Sφ = {φ(s) : ∀s∈S},

Rφ(φ(s), a) =
∑

g∈φ−1(φ(s)))

w(g)R(g, a),

Tφ(s, a, s′) =
∑

g∈G(s)

∑
g′∈G(s′)

Tφ(g, a, g′)w(g),

with w(s) is a fixed weighting function and G(s) =
φ−1(φ(s)). That is, G(s) gets all of the true environmental
states in the same cluster as s.

The process yielded by Aφ interacting with M is not identi-
cal to A interacting with Mφ. That is, the expected trajec-
tory taken by the agent is not the same in the two situations.
Formally:

EA [st | s0, π] 6= EAφ
[st | s0, π] , (19)

where st is the state the agent arrives in after t time steps.

Proof. Note that when Mφ is computed directly, the func-
tionsRφ and Tφ assume a fixed weighting function w(s).

Again consider the three state chain from the previous proof.

During typical interaction between M and Aφ, however, no
such fixed weighting function exists for any algorithm A
that updates its policy. That is, the distribution of states the
agent finds itself in will change as its policy changes, and
therefore, w(s) must change, too.

Thus, the process of Aφ interacting with M induces a se-
quence of interactions with abstract MDPs whose transition
and rewards change along with the policy the agent fol-
lows. Thus, for any non-identity φ, for any algorithm A
whose policy changes over time, the resulting interaction is
non-identical.


