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Abstract

All sequential decision-making agents explore so as to acquire knowledge about
a particular target. It is often the responsibility of the agent designer to construct
this target which, in rich and complex environments, constitutes a onerous burden;
without full knowledge of the environment itself, a designer may forge a sub-
optimal learning target that poorly balances the amount of information an agent
must acquire to identify the target against the target’s associated performance
shortfall. While recent work has developed a connection between learning targets
and rate-distortion theory to address this challenge and empower agents that decide
what to learn in an automated fashion, the proposed algorithm does not optimally
tackle the equally important challenge of efficient information acquisition. In this
work, building upon the seminal design principle of information-directed sampling
[Russo and Van Roy, 2014], we address this shortcoming directly to couple optimal
information acquisition with the optimal design of learning targets. Along the way,
we offer new insights into learning targets from the literature on rate-distortion
theory before turning to empirical results that confirm the value of information
when deciding what to learn.

1 Introduction

Information acquisition is a fundamental consideration in the design of sequential decision-making
agents. Indeed, the literature over recent years has unequivocally demonstrated its theoretical [Russo
and Van Roy, 2016, 2014, 2018a] and empirical [Osband et al., 2016a,b, Nikolov et al., 2018]
importance in addressing the challenge of exploration in sequential decision-making problems.
Despite this significance, a strategy for information acquisition, however efficient, is only as good
as the information it uncovers. An agent that displays remarkable efficiency in seeking immaterial
information offers little utility to its designer. Similarly, when faced with the rich complexity of
real-world tasks, a computationally-bounded agent aspiring to learn that which is well beyond its
constrained resources is equally ineffective. As a concrete example of the latter scenario, consider
learning the optimal policy for the game of Go [Silver et al., 2017] solely relying on the hardware
of a mobile device. While not an entirely infeasible task, the amount of time needed to complete
such an endeavor may force the agent designer into settling for a small fraction of the optimal policy
performance in exchange for a substantial reduction in the difficulty of the learning problem.

Recent work has developed a connection between rate-distortion theory [Shannon, 1959, Berger,
1971] and the problem of deciding what an agent should learn [Arumugam and Van Roy, 2021],
optimally balancing between the requisite information needed by any agent to identify a learning target
and the corresponding performance shortfall associated with this target. Intuitively, the complexity
of a learning problem can be quantified by the bits of information an agent must acquire from the
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environment in order to realize a particular target. Rate-distortion theory offers a principled framework
for reasoning about a learning target that comprises the minimum number of bits from the environment
while retaining some degree of near-optimality. Arumugam and Van Roy [2021] operationalize the
classic Blahut-Arimoto algorithm [Blahut, 1972, Arimoto, 1972] in the multi-armed bandit setting to
facilitate computationally-tractable agents that are not only capable of computing such an optimal
target at the start of learning but also gradually adapt this target over time as the agent’s knowledge
of the environment accumulates. The resulting Blahut-Arimoto Satisficing Thompson Sampling
algorithm (BLASTS) then applies the well-known principle of probability matching in order to select
actions [Thompson, 1933, Russo et al., 2018]. While BLASTS demonstrates the desired ability
to accommodate an agent designer in recovering a wide spectrum of policies with varying levels
of performance and learning efficiency, it is well known that the underlying probability matching
principle of Thompson Sampling constitutes a sub-optimal exploration strategy [Russo and Van Roy,
2018a].

In this work, we combine the optimal computation of learning targets via rate-distortion theory with
optimal information acquisition. To achieve the latter goal, we generalize the information-directed
sampling (IDS) principle of Russo and Van Roy [2018a] so that the fundamental information ratio
captures expected regret and information gain about a learning target computed via the Blahut-
Arimoto algorithm. As with BLASTS, the resulting algorithms which instantiate this Blahut-Arimoto
Information-Directed Sampling principle (BLAIDS) retain a single, real-valued hyperparameter
through which an agent designer expresses a preference for the balance struck by the resulting
learning target. Moreover, just as BLASTS offers a generalization of Thompson Sampling capable
of more efficiently computing optimal policies, we find that a particular computationally-tractable
instantiation of BLAIDS mirrors this property relative to its IDS counterpart. En route to deriving
BLAIDS, we outline the precise details of the Blahut-Arimoto algorithm itself and connect our setting
with various results from the information-theory literature.

The paper proceeds as follows: in Section 2 we offer a general presentation of information-theoretic
learning targets for sequential decision-making problems. We then hone in on the multi-armed bandit
setting in Section 3 to carefully study incorporating the value of information when acting in pursuit
of an arbitrary learning target. We conclude in Section 4 with a corroborating set of computational
experiments that demonstrate the efficacy of our approach. Due to space constraints, we relegate
background material on information theory, related work, and all technical proofs to the appendix.

2 Learning Targets

This section focuses on a general treatment of learning targets via rate-distortion theory, moving
beyond the assumptions of Arumugam and Van Roy [2021] and offering further insight into the
mathematical details of the Blahut-Arimoto algorithm.

2.1 Problem Formulation

In this section, we follow the general problem formulation of Lu et al. [2021] that offers a unified
treatment of sequential decision-making problems, spanning multi-armed bandits and reinforcement-
learning problems [Lattimore and Szepesvári, 2020, Sutton and Barto, 1998]. We adopt a generic
agent-environment interface wherein, at each time period, the agent executes an action At ∈ A
within an environment E which results in an associated next observation Ot+1 ∈ O. This sequential
interaction between agent and environment results in an associated history at each timestep Ht =
(A0, O1, . . . , At−1, Ot) ∈ H representing the action-observation sequence available to the agent
upon making its selection of At. More formally, we may characterize the overall environment
as E = 〈A,O, ρ〉 containing the action set A, observation set O, and the observation function
ρ : H×A → ∆(O) that prescribes the distribution over next observations given the current history
and action selection:

P(Ot+1|E , Ht, At) = P(Ot+1|Ht, At) Ot+1 ∼ ρ(·|Ht, At).

An agent’s policy π : H → ∆(A) encapsulates the relationship between the histories encountered
in each timestep Ht and the executed action At. We maintain that actions are independent of the
environment conditioned on history, At ⊥ E|Ht such that π(a|Ht) = P(At = a|Ht) assigns a
probability to each action a ∈ A given the history.
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An agent designer expresses preferences across histories via a reward function r : H×A×O → R
such that an agent enjoys a reward Rt+1 = r(Ht, At, Ot+1) at each timestep. Given any finite time

horizon T < ∞, the accumulation of rewards provide a notion of return
T−1∑
t=0

Rt+1. To develop

preferences over behaviors, it is natural to associate with each policy π a corresponding expected

return or value across the horizon T as V
π

= E
[
T−1∑
t=0

Rt+1 | E
]
, where the expectation integrates

over the randomness in the policy π as well as the observation function ρ. A trademark across the
sequential decision-making literature is the design of agents that strive to achieve the optimal value
within the confines of some policy class Π ⊆ {π : H → ∆(A)}, V ? = sup

π∈Π
V
π

. Notice that when

rewards and the distribution of the next observation Ot+1 depend only on the current observation
Ot, rather than the full history Ht, we recover the traditional Markov Decision Process [Bellman,
1957, Puterman, 1994] studied throughout the reinforcement-learning literature [Sutton and Barto,
1998]. Alternatively, when these quantities rely solely upon the most recent action At, we recover the
traditional multi-armed bandit [Lattimore and Szepesvári, 2020].

2.2 The Curse of Curiosity

While the design of agents in pursuit of optimal policies is a perfectly natural object of study, it
can often occur without regard for the complexity of the environment. In particular, the optimal
policy is often a deterministic function of the environment such that, if an agent manages to identify
the environment, it possesses all requisite information to determine the optimal policy. An agent
designer reflects their initial uncertainty about the environment through a prior distribution P(E ∈ ·);
as the history unfolds, what can be learned from the agents current knowledge of the environment
is represented by conditional probabilities P(E ∈ ·|Ht). Through this prior distribution, a total
of H(E) bits quantify all of the information needed for identifying the environment. Prior work
has demonstrated both theoretically and empirically how it is an agent’s incremental resolution of
epistemic uncertainty over the environment E that gives rise to the efficient acquisition of these H(E)
bits [Chapelle and Li, 2011, Russo and Van Roy, 2016, Osband et al., 2016a, Agrawal and Jia, 2017,
O’Donoghue et al., 2018, Osband et al., 2019]. For sufficiently rich and complex environments,
however, H(E) can become prohibitively large or even infinite, making the pursuit of an optimal
policy entirely intractable.

This issue warrants the construction of a more general mechanism whereby an agent designer may
express tractable learning targets, alternatives to the optimal solution that, while potentially incurring
some degree of suboptimality, fall within the means of a computationally-bounded agent interacting
with a highly-complex environment. Lu et al. [2021] introduce this notion of a learning target χ as a
generic random variable and (possibly stochastic) function of the environment E . Their proposed
desiderata for the construction of learning target is two-fold: (1) demanding only a feasible amount
of information from the environment I(E ;χ) in order to reconcile χ and (2) incurring a bounded
degree of performance shortfall by aiming for χ, E[V

? − V πχ ], where πχ is a target policy induced
by χ. Observe, however, that this treatment of a learning target assumes its provision to the agent
before interaction with the environment has begun. Consequently, the burden of specifying a suitable
learning target that best balances between the two desiderata falls upon the agent designer. To remedy
this, we begin by extending the formulation of Arumugam and Van Roy [2021] and emphasizing
rate-distortion theory as a general tool for the design of optimal learning targets.

It is important to re-iterate and clarify that the role of πχ is not to achieve performance that is on par
with the optimal π?, but rather to strike an appropriate balance between performance shortfall relative
to π? and the ease of learnability; the latter desideratum is accurately captured mathematically via
bits of information. As an agent shifts its focus away from π? towards a χ that is easier to learn (in
the information-theoretic sense used throughout this paper), we anticipate greater data efficiency.
That is, an agent should be able to more quickly identify the desired χ relative to the requisite
amount of time and data needed to identify π?. Naturally, in a complex environment, we expect this
data efficiency to be critical and to come at some cost: the sub-optimality of the resulting solution
(which we take as the distortion in our rate-distortion framing). An agent designer’s willingness to
tolerate this sub-optimality stems from the complexity of the environment and an acknowledgement
of the potentially intractable amount of data needed to otherwise identify and recover π?. The more
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performance shortfall one is willing to tolerate relative to optimal behavior, the more efficiently an
agent should be able to find such a satisficing solution. Russo and Van Roy [2018b] already highlight
one example of this phenomenon in the multi-armed bandit setting, where the presence of multiple
arms can make pursuit of an ε-optimal arm far more data efficient than the optimal arm. From the
perspective of the agent designer, one should not incorporate a learning target with the expectation of
being competitive with the optimal policy, but rather with the goal of being more data efficient in the
acquisition of the learning target relative to that of the optimal policy.

2.3 The Rate-Distortion Theory of Learning Targets

Rate-distortion theory is a sub-area of information theory that encapsulates the foundations of
lossy compression [Shannon, 1959, Berger, 1971, Cover and Thomas, 2012]. Abstractly, rate-
distortion theory formulates a lossy compression problem as a constrained optimization in the space
of probability kernels or channels, given an information source and a tolerable upper threshold on
distortion. The natural goal is to identify a channel that preserves the minimum number of bits from
the information source while adhering to the specified distortion upper bound.

More formally, let (Ω,F ,P) be a probability space and consider a random variableX : Ω→ X taking
values on the measurable space (X ,X) with an associated marginal distribution PX(·) = P(X−1(·))
that represents an information source. Similarly, define the random variable X̂ : Ω → X̂ that
takes values on (X̂ , X̂) and corresponds to a channel output. Given a known, measurable distortion
function d : X × X̂ 7→ R≥0 and a desired upper bound on distortion D, the rate-distortion function
is defined as R(D) = inf

P
X,X̂
∈Λ
I(X; X̂) quantifying the minimum number of bits (on average)

that must be communicated from X across a channel in order to adhere to the specified expected
distortion threshold D. Here, the infimum is taken over Λ = {PX,X̂ | ∀A ∈ X : PX,X̂(A× X̂ ) =

PX(A) and E[d(X, X̂)] ≤ D} representing the set of all joint distributions on (X × X̂,X × X̂)
whose corresponding marginal distribution on X matches the original information source PX while
also satisfying the constraint on bounded expected distortion. Intuitively, a higher rate corresponds
to requiring more bits of information and smaller information loss between X and X̂ , enabling
higher-fidelity reconstruction (lower distortion); conversely, lower rates reflect more substantial
information loss, potentially exceeding the tolerance on distortion D. The remainder of this section
is devoted to making the mathematical details of this problem precise in our specific context of
specifying learning targets. We encourage readers to consult the appendix for the precise details of
our notation.

At each timestep, an agent maintains its epistemic uncertainty over the environment via a posterior
distribution P(E|Ht). Since the derivation is identical for all timesteps, we suppress time and history
from the notation for now and let PE denote this distribution at any arbitrary timestep. We will take
the environment E and learning target χ random variables to be associated with measurable spaces
(Σ,S) and (Ξ,X), respectively. Let PE,χ defined on (Σ × Ξ,S × X) be a joint distribution over
environment-target pairs. Furthermore, let d : Σ× Ξ→ R≥0 be a known, measurable function that
quantifies a notion of loss or distortion that occurs by using a particular realization of the learning
target within a specific realization of the environment. We may define the rate-distortion function as1

R(D) = inf
PE,χ∈Λ:E[d(E,χ)]≤D

I(PE,χ) , inf
PE,χ∈Λ:E[d(E,χ)]≤D

I(E ;χ) (1)

Λ = {PE,χ | ∀A ∈ S : PE,χ(A× Ξ) = PE(A) and ∀t ∈ [T ] : χ ⊥ Ht|E} (2)

where the infimum is taken over the constrained set of joint probability measures Λ such that (1) the
E marginal of PE,χ matches the given source distribution PE , (2) the expected distortion does not
exceed the given threshold D ∈ R>0, and (3) the target is conditionally independent of all histories
given the environment. These first two conditions are typical in rate-distortion theory while the final
condition simply ensures that no history can offer more information about a learning target than
what is already provided by the environment. While the distortion function d will eventually be
defined so as to quantify the performance shortfall of our learning target, we proceed with the generic,

1Typically, R(D) is defined in terms of the mutual information, however the (equivalent) parameterization
via the joint distribution PE,χ will be useful in subsequent derivations.
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unspecified distortion function for now and assume thatR(D)→ 0 as D →∞. Following from this
assumption along with the convexity of mutual information and Gibb’s inequality, we may recover
the basic facts that R(D) is a non-negative, convex, and monotonically-decreasing function in its
argument [Cover and Thomas, 2012].

The details of computing rate-distortion functions as presented by Arumugam and Van Roy [2021]
rely on the classic derivation based on calculus and Lagrange multipliers, under the assumption that
the information source and channel output are discrete random variables [Blahut, 1972]. In brief
and continuing with the first example of this section, the discrete algorithm proceeds by initializing
p0(x̂ | x) = |X̂ |−1, ∀x̂ ∈ X̂ and then iterating the following two updates

qk(x̂) =
∑
x∈X

p(x)pk−1(x̂ | x) pk+1(x̂ | x) ∝ qk(x̂) exp (−βd(x, x̂)) ,

where p(x) denotes the information source and β is a Lagrange multiplier. While discreteness carries
computational conveniences for practical implementation, here we offer a more general presentation
of the Blahut-Arimoto algorithm for arbitrary environments and learning targets. It is important to
clarify that the subsequent derivations of this section are classic results in the information-theory
literature [Csiszár, 1974, Gray, 2011] and do not represent novel theoretical contributions of this work;
that said, we do take our contribution to be distilling such key results from the information-theory
literature for broader consumption by the sequential decision-making community and, to that end,
offer a full presentation for the benefit of readers.

For the purposes of handling this constrained optimization, we introduce the following objective with
parameter β ≥ 0:

F(β) = inf
PE,χ∈Λ

(I(PE,χ) + βE [d(E , χ)]) = inf
PE,χ∈Λ

(DKL(PE,χ||PE × Pχ) + βE [d(E , χ)])

As noted by Csiszár [1974], F(β) is the largest vertical-axis intercept of a line with slope −β that
includes no point above the rate-distortion curve. Moreover, the rate-distortion function can be
expressed in terms of this new objective, sweeping over all possible values of β.
Lemma 1 (Lemma 1.2 [Csiszár, 1974]).

R(D) = max
β≥0
F(β)− βD

The value of β that achieves this maximum is characterized as being associated with the distortion
threshold D. Conversely, a joint distribution PE,χ that achieves the infimum of F(β) has an associate
rateR(D) = I(PE,χ) where β is associated with D = EPE,χ [d(E , χ)] ,

∫
d(E , χ)dPE,χ(E , χ).

Lemma 4 clarifies an important relationship between the parameter β and the rate-distortion curve,
accommodating computation of the rate-distortion function upon specification of a particular β values
rather than a distortion upper bound D; in particular, each β corresponds to the slope of a tangent line
to the rate-distortion curve such that, given a value of β, the associated joint distribution that achieves
the infimum in F(β) generates the point (D,R(D)) on the curve. Per Blahut [1972], computing the
infimum in F(β) is handled by an alternating optimization procedure that relies on the following
functional:

J (PE,χ,Qχ, β) = DKL(PE,χ||PE ×Qχ) + βEPE,χ [d(E , χ)]

which replaces the marginal distribution over χ induced by PE,χ with an alternative distribution
Qχ. When J (PE,χ,Qχ, β) is finite, this implies that PE,χ � PE ×Qχ; moreover, if EPE,χ [d(E , χ)]
is finite, then PE × Qχ({E , χ|d(E , χ) < ∞}) > 0. Taken together, these facts imply that for any
realization of the environment

αQχ,β(E) =

[∫
exp (−βd(E , χ)) dQχ(χ)

]−1

<∞

holds PE -almost surely. Thus, for any marginal over learning targets Qχ, we may induce a new joint
distribution QE,χ whose corresponding Radon-Nikodym derivative with respect to PE ×Qχ is given
by

dQE,χ
dPE ×Qχ

= αQχ,β(E) exp (−βd(E , χ)) (3)
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While the corresponding χ marginal of this new joint distribution need not be identical to Qχ, we can
show that our original source distribution PE is preserved under the corresponding E marginal. In
particular, for any measurable set A ∈ S, we have

QE,χ(A× Ξ) =

∫
F×Ξ

dQE,χ
dPE ×Qχ

dPE ×Qχ(E , χ) =

∫
F×Ξ

αQχ,β(E) exp (−βd(E , χ)) dPE ×Qχ(E , χ)

=

∫
A

(
αQχ,β(E)

∫
exp (−βd(E , χ)) dQχ(χ)

)
︸ ︷︷ ︸

=1

dPE(E) = PE(A),

where the second line uses the aforementioned integrability conditions to apply Fubini’s Theorem.
To recover an alternating optimization procedure for minimizing our objective and computing the
rate-distortion function, we may leverage the following relationship between the original and new
joint distributions:
Lemma 2 (Lemma 1.2 [Csiszár, 1974]). Let Qχ be an arbitrary marginal distribution over χ.
Moreover, let PE,χ be an arbitrary joint distribution over E , χ with an associated marginal distribution
Pχ and take QE,χ to be the joint distribution as defined in Equation 3. Then,

J (PE,χ,Qχ, β) ≥ J (PE,χ,Pχ, β)

J (PE,χ,Qχ, β) ≥ J (QE,χ,Qχ, β)

Lemma 5 prescribes a natural algorithm for the computation of rate-distortion functions. Upon the
provision of a source distribution over environments PE and an initial marginal distribution over
learning targets Q(1)

χ , one may first compute an updated channel distribution Q(1)
E,χ per Equation 3.

The induced marginal of Q(1)
E,χ serves as the next distribution Q(2)

χ , giving rise to another updated

channel Q(2)
E,χ. Naturally, this process may continue iteratively until convergence. By the second

inequality of Lemma 5, the updated channel distributions Q(k)
E,χ are non-increasing in the objective

and, analogously, the induced marginal distribution is also guaranteed to not increase the objective by
the first inequality. This procedure is precisely the classic Blahut-Arimoto algorithm [Blahut, 1972,
Arimoto, 1972], generalized beyond the assumptions of discrete source and channel output random
variables.

2.4 Target Policies for Reinforcement Learning

With the results of the previous section in hand, an agent may, at any timestep, run the Blahut-Arimoto
algorithm using its current posterior beliefs over the environment P(E|Ht) as a source distribution in
order to compute a learning target that optimally negotiates between the information required to learn
and the resulting target performance shortfall. In the context of reinforcement-learning problems, this
learned target χ corresponds to a particular target policy πχ and, to ensure the latter criterion holds, a
natural notion of distortion is the expected squared regret between the optimal and target policies:

d(E , χ|Ht) = E
[
(V

? − V πχ)2|E , Ht

]
= E

(Eπχ
[
T−1∑
t′=t

(V ?(Ht′)−Q?(Ht′ , At))

])2 ∣∣∣E , Ht

 .
The final equality follows from a variant of the performance-difference lemma [Kakade and Langford,
2002] and is proven for our setting as Theorem 1 of Lu et al. [2021]. Unfortunately, while the results
of the previous section hold for this particular sequence of rate-distortion functions, the choice of
χ as a target policy represents an obstacle to practical implementation. In particular, this would
imply that the resulting channel of the Blahut-Arimoto algorithm would map between realizations
of the environment E to target policies π : H → ∆(A). Moreover, computation of the distortion
associated with each possible realization of the target policy πχ would require either an independent
policy-evaluation step to compute the value function V

πχ or demand sampling trajectories of each
potential πχ from the environment in order to leverage the final performance shortfall decomposition
shown above.
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One possible resolution to these issues might include leveraging recent progress in unsupervised skill
discovery [Eysenbach et al., 2018] such that potential target policies πχ all come from the resulting
parameterized policy class. Computing the associated universal value function approximator [Schaul
et al., 2015] for this policy class would allow for efficient computation of the distortion function
during the rate-distortion optimization. As an alternative, one might further restrict focus to a tabular
Markov Decision Process, at which point the target policy in question can be expressed as a finite
sequence of action random variables (one per state); it may then be possible to “stitch” πχ from the
solutions to each of the state-dependent rate-distortion functions.

For now, we leave the question of how to adaptively compute optimal target policies in a
computationally-tractable manner to future work and, instead, turn our attention to the multi-armed
bandit setting where we may more feasibly study the coupling of optimal learning targets with optimal
information acquisition.

3 Target Actions & The Value of Information

In order to develop a computationally-tractable algorithm for combining learning targets with IDS,
this section focuses on multi-armed bandit problems where we take the learning target χ to be a target
action the agent aims to identify from the environment.

3.1 Blahut-Arimoto Satisficing Thompson Sampling

We begin by taking a closer look at the design of BLASTS and examine the extent to which learning
targets computed via the Blahut-Arimoto algorithm are preferable to hand-crafted learning targets.
As a first observation, we recall that while BLASTS does employ the Blahut-Arimoto algorithm as
described in the previous section, the function computed by Arumugam and Van Roy [2021] is actually
the so-called “plug-in” estimator for the rate-distortion function [Harrison and Kontoyiannis, 2008];
rather than directly using the agent’s representation of environment uncertainty as an information
source, BLASTS draws a fixed number of posterior samples z and uses the resulting empirical
distribution as an input source to the Blahut-Arimoto algorithm. Such an approach is amenable to
scenarios where an agent is only able to sample from its beliefs over the environment but cannot
reliably provide estimates of likelihoods [Osband et al., 2016a, Lu and Van Roy, 2017].

Clearly, as z → ∞, the empirical distribution converges in probability to the true distribution and
yet, implicit in the design of BLASTS is an assumption that a similar convergence statement holds
for the plug-in estimator and the true rate-distortion function R(D). Fortunately, Harrison and
Kontoyiannis [2008] have already proven general consistency results for the plug-in estimator of the
rate-distortion function in two distinct settings of interest to sequential decision-making problems:
(1) under a finite action set and (2) when the action set is a compact, separable metric space such that
for each realization of the environment E , d(E , ·) is continuous; naturally, the latter condition ensures
consistency even under a continuous action space, although running the Blahut-Arimoto algorithm to
optimize such a continuous channel output is non-trivial [Dauwels, 2005].

While the previous result is encouraging, it immediately begs the question of how many posterior
samples z are needed for the plug-in estimator R̂(D) to, with high probability, be an ε-accurate
approximation of the true rate-distortion functionR(D)? While Palaiyanur and Sahai [2008] offer
an answer to this question in their study of the uniform continuity of the rate-distortion function for
discrete random variables, their analysis and corresponding sample-complexity bounds depend on a
problem-specific parameter D̃ = min

(E,χ):d(E,χ)>0
d(E , χ) denoting the minimum non-zero distortion

achieved by all environment-target pairs. While this constant does make sense in an information-
theoretic context (for instance, under Hamming distortion, D̃ = 1), minimizing over all possible
environments under a notion of distortion commensurate with expected squared regret engenders
exceedingly small values of D̃, rendering the associated bounds vacuous. To remedy this issue, we
consider a minor modification to the statement of Lemma 2 by Palaiyanur and Sahai [2008], replacing
their more general result that carries an unfavorable dependence on D̃ with a less general result in
terms of

D(PE) = min
E:PE(E)>0

min
χ:d(E,χ)>0

d(E , χ)
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When the distortion function is aligned with the regret between the optimal action and target action,
D(PE) corresponds to the worst-case action gap between the best and second-best actions [Farahmand,
2011, Agrawal and Goyal, 2013, Bellemare et al., 2016] based on the agent’s current posterior over
the environment. It is important to note that while our adjustment to Lemma 2 (and its corresponding
effect on Lemma 5) of Palaiyanur and Sahai [2008] carries meaningful semantics for our sequential
decision-making setting, the proof of the modified result still follows exactly as in their original
paper2, which leverages the uniform continuity of entropy.
Lemma 3 (Lemma 2 - [Palaiyanur and Sahai, 2008]). Let E , χ be discrete random variables. Let PE
denote the agent’s current posterior over E and let P̂E be the empirical distribution. If ||PE − P̂E ||1 ≤
D(PE)

4 , then for any D ≥ 0,

|R(D)− R̂(D)| ≤ 7

D(PE)
||PE − P̂E ||1 log

(
|Σ||Ξ|

||PE − P̂E ||1

)
.

Corollary 1 (Lemma 5 - [Palaiyanur and Sahai, 2008]). For any δ ∈ (0, 1), ε ∈ (0, log(Σ)) let
PE ∈ ∆(Σ) be the current posterior over E . Additionally, let φ−1 denote the inverse of the function

φ : [0, 1
2 ]→ R where φ(t) = t log

(
|Σ||Ξ|
t

)
. If

z ≥ 2

φ−1
(
εD(PE)

7

)2

(
log

(
1

δ

)
+ |Σ| log(2)

)
, then P(|R(D)− R̂(D)| ≥ ε) ≤ δ.

While the results discussed so far provide insight into the Blahut-Arimoto algorithm itself, it is
worth examining the extent to which learning targets computed via rate-distortion theory improve
over a hand-crafted learning target. While such an improvement is certainly expected based on the
theoretical analyses of [Russo and Van Roy, 2018b, Arumugam and Van Roy, 2021], it has not yet
been demonstrated empirically. Due to space constraints, we defer a presentation of such empirical
results that elucidate the value of computing learning targets via rate-distortion theory to the appendix.

3.2 Blahut-Arimoto Information-Directed Sampling

While BLASTS is successful in leveraging optimal learning targets, we consider improving upon the
exploration technique used for collecting information about those targets through the algorithmic
design principle of information-directed sampling [Russo and Van Roy, 2018a]. Information-directed
sampling (IDS) is an abstract objective for sequential decision-making agents where, at each time
period, an agent computes a policy based on the current history Ht that minimizes the information
ratio

πt = min
π∈∆(A)

Eπ
[
EE
[
R(A?)−R(At) | Ht

]]2
I(A?;At, Ot+1|Ht = Ht)

.

Here, R(·) denotes the mean reward associated with an input action. In words, the information
ratio of a particular policy π ∈ ∆(A) weighs the squared expected regret of action At ∼ π rela-
tive to the optimal action A? against the expected information gain about A? by taking At. Note
that the information gain term I(A?;At, Ot+1|Ht = Ht) conditions upon the particular realiza-
tion of the agent’s history at time period t, Ht. Relating this quantity to the more traditional
notion of conditional mutual information only requires integrating over the randomness in Ht:
E [I(A?;At, Ot+1|Ht = Ht)] = I(A?;At, Ot+1|Ht). For our purposes, we consider a modified
information ratio that leverages the output of the Blahut-Arimoto algorithm.

In particular, we define Blahut-Arimoto Information-Directed Sampling (BLAIDS) as a general
recipe for efficient exploration with optimal learning targets wherein an agent first uses its current
posterior as a source distribution, computing a learning target χ via the Blahut-Arimoto algorithm.
Subsequently, the agent employs IDS to balance optimal behavior and information gain about this
target by minimizing the following information ratio

Ψt(π) =
Eπ [∆t(a)]

2

I(χ;At, Ot+1|Ht = Ht)
∆t(a) = EE,χ

[
R(χ)−R(a) | Ht

]
,

2Under a standard assumption that rewards are bounded in [0, 1] and d(E , χ) is a function of regret, the d?

term that appears in their original bound is equal to 1.
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where the expectation is with respect to the joint distribution computed by the Blahut-Arimoto
algorithm. Observe that the distortion function used here is given by d(E , χ | Ht) = d(E , Aχ |
Ht) = E[(R(A?)−R(Aχ))2 | E , Ht] where, conditioned on a realization of the environment E , we
may compute R(·) [Arumugam and Van Roy, 2021]. One perspective on BLAIDS is that IDS, with
its default focus on A?, will spend time acquiring too much information relative to BLAIDS that will
adaptively guide IDS towards uncovering the minimum number of bits needed to achieve a desired
level of sub-optimality. Naturally, BLAIDS is a generalization of IDS since, as β →∞, the Blahut-
Arimoto algorithm computes the optimal action A? for each realization of the environment from the
input source distribution. Just as with IDS, BLAIDS is a design principle whose abstract objective
must be made explicit in a computationally-tractable manner in order to yield a corresponding
algorithm. One standard choice for IDS is to leverage a lower bound of mutual information by the
variance in rewards [Russo and Van Roy, 2018a, Nikolov et al., 2018, Dwaracherla et al., 2020, Lu
et al., 2021]. This results in an upper bound on the per-period information ratio that is suitable for
minimization:

Ψt(π) ≤ Eπ [∆t(At)]
2

Eπ [vt(At)]
vt(At) = V

[
E
[
R(At)|χ,Ht

]
|Ht

]
.

To see how this upper bound lends itself to a computationally-tractable instantiation of IDS, observe
that with z posterior samples, the Blahut-Arimoto algorithm results in a distribution over learning
targets conditioned on each posterior sample of the environment p(χ = ã|E = e). Denoting the
induced marginal over learning targets as q(ã), we have

vt(At = a) =
∑
ã∈A

q(ã)

(
1

z

∑
e

p(ã|e)
q(ã)

Et
[
R(At)|χ = a, E = e

]
− 1

z

∑
e

Et
[
R(At)|E = e

])2

.

Using this lower bound, we recover variance-BLAIDS as a computationally-tractable analogue
to variance-IDS. Once again, to see that variance-BLAIDS generalizes variance-IDS note that as
β → ∞, recovery of the optimal action by the Blahut-Arimoto algorithm implies that for any
realization of the environment and any ã ∈ A, p(ã|E = e) ∈ {0, 1}, identifying if ã is optimal in that
realization of the environment. Consequently,

∑
E
p(ã|E) = |Ea?=ã| and q(ã) = z−1|Ea?=ã|, where

E?a?=ã denotes a partition of the posterior samples such that a? ∈ A is optimal for all environments
e ∈ Ea?=ã. In the next section, we assess the extent to which variance-BLAIDS improves upon
standard variance-IDS through the use of optimal learning targets.

(a) Optimal β values (b) Satisficing β values (c) Adaptive βt = Ψ
−1

(d) Optimal β values (e) Satisficing β values (f) Adaptive βt = Ψ
−1

Figure 1: Regret curves for independent Bernoulli (top) and Gaussian (bottom) bandits with 50 arms.
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4 Experiments

In our experimental setup, we examine independent Bernoulli and Gaussian bandit problems, sweep-
ing over values of β in order to examine the spectrum of policies induced by the various learning
targets. Similar to BLASTS, BLAIDS is agnostic to the particular mechanism used for represent-
ing an agent’s epistemic uncertainty. For our experiments, we found the use of a linear hyper-
model [Dwaracherla et al., 2020] to be sufficient when optimized via Adam [Kingma and Ba, 2014]
(learning rate of 0.001) with a noise variance of 0.1, prior variance of 1.0, and batch size of 1024. We
adopt all other hyperparameters of [Arumugam and Van Roy, 2021] for running the Blahut-Arimoto
algorithm [James et al., 2018]3 in each time period and run experiments via Google Colab with a
GPU. In Figure 1, we report the cumulative regret in each time period across Thompson Sampling
(TS), BLASTS, variance-IDS (V-IDS), and variance-BLAIDS (V-BLAIDS) where shading denotes
95% confidence intervals averaged over 10 random trials. For clarity, we split the figures in each
problem between those values of β which manage to achieve an optimal policy and those which learn
a sub-optimal policy.

Our empirical results highlight opportunities for more efficient learning in light of information-
directed exploration. Notably, the gap between BLASTS and variance-BLAIDS widens as β in-
creases, asserting more importance in pursuing a near-optimal learning target. Curiously, while the
Bernoulli bandit does show small performance gains relative to variance-IDS when lowering β, such
improvements do not appear in the Gaussian setting and present an interesting direction for future
work to investigate the nature of information structures where learning an optimal policy can be im-
proved through automated learning targets. That said, it is worth noting that the prior variance used in
our experiments already matches the true variance of the environment and so, under a less-calibrated
prior, there might be greater opportunity for variance-BLAIDS to shine over variance-IDS.

As in Arumugam and Van Roy [2021], we also entertain the idea of an intimate relationship between
β and the (best) information ratio Ψt = min

π∈∆(A)

Eπ [∆t(a)]2

I(A?;At,Ot+1|Ht=Ht) . We also find that the use of

an adaptive βt = Ψ
−1

t yields the best performance in both problem classes for learning an optimal
policy. While the existence of a meaningful correspondence between β and Ψt seems natural given
their respective roles and aligned units (bits per squared unit of regret for the former and squared units
of regret per bit for the latter), it is unclear if and when this scaling is correct. On the whole, these
results serve as simple, fundamental sanity checks that confirm the importance of prudent information
acquisition, even when in pursuit of a learning target besides the optimal action.

5 Conclusion

Learning targets are a general mechanism for guiding the information sought out by a sequential
decision-making agent. As environments continue to grow in complexity so as to meet the demands
of more challenging real-world tasks, so too will the need for learning targets that fall within the
means of computationally-bounded agents. This work falls in with a new direction that leverages
rate-distortion theory in order to forge such optimal learning targets and asks how such targets
couple with existing methods for optimal information acquisition. Our work confirms that the
computationally-tractable approaches for computing optimal learning targets are compatible with the
well-studied principle of information-directed sampling. While we have found suitable answers for
the multi-armed bandit setting, much remains to be understood about the nature of these learning
targets themselves as well as how to extend these algorithms to handle target policies and other richer
notions of learning objectives.
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A Related Work

This work primarily focuses on the design of sample-efficient sequential decision-making agents
through principled methods of information acquisition and information representation [Lu et al.,
2021]. While the use of information theory, and in particular rate-distortion theory, has been explored
for the latter [Abel et al., 2019, Dong and Van Roy, 2018], this work aims to advance understanding
of the role that rate-distortion theory plays in addressing the former challenge; we additionally hope
that future work may further capitalize on these insights and techniques for information representation
as well.
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The challenge of efficient information acquisition is intimately tied to the exploration-exploitation
trade-off that quintessentially appears in multi-armed bandit problems [Bubeck et al., 2012, Lattimore
and Szepesvári, 2020]. Foremost among the various principled approaches for delicately negotiating
this trade-off is the algorithmic design principle known as information-directed sampling (IDS) [Russo
and Van Roy, 2018a]. IDS centers around a fundamental quantity known as the information ratio:
the ratio in each time period of the squared expected regret and the expected information gain. The
complimentary design principle naturally prescribed by this quantity is for an agent to, in each
timestep, compute the policy that minimizes this information ratio. Accompanying the algorithmic
simplicity that IDS espouses are the simple yet elegant theoretical analyses that it facilitates, which
have been extended and adapted in numerous works [Lattimore and Szepesvári, 2019, Zimmert and
Lattimore, 2019, Bubeck and Sellke, 2020, Lattimore and György, 2020, Kirschner et al., 2020].
While IDS has been extensively studied and the information ratio has been refined and generalized in
numerous ways, there has been an almost exclusive focus on measuring information gained about the
optimal action. While optimal actions are the prominent object of study throughout the sequential
decision-making literature, the challenges of sample-efficient learning when faced with the complexity
and scale of the real world motivate the need for fine-grained control over more generic notions of
learning targets. This fact has been recognized by previous works [Russo and Van Roy, 2018b, Lu
et al., 2021] which identify the utility of rate-distortion theory in overcoming these challenges, but
offer no concrete algorithmic mechanisms for leveraging it fruitfully. Meanwhile, Arumugam and
Van Roy [2021] succeed in addressing the algorithmic hurdle but only examine and analyze action
selection via Thompson Sampling; our work closes this natural gap and offers a new generalization
of IDS that accommodates effective information acquisition about alternative learning targets.

Finally, we note that the Blahut-Arimoto algorithm [Blahut, 1972, Arimoto, 1972] proves to be
a critical algorithmic tool for enjoying the practical virtues of rate-distortion theory in sequential
decision-making problems. The algorithm itself has been a popular object of study for its utility
in the information-theory community as well as its efficacy as an alternating optimization algo-
rithm [Boukris, 1973, Rose, 1994, Sayir, 2000, Matz and Duhamel, 2004, Niesen et al., 2007,
Vontobel et al., 2008, Naja et al., 2009, Yu, 2010]. While we do not explore any extensions of the
Blahut-Arimoto algorithm in this work due to their focus on improving computational efficiency,
practitioners may find these computational advantages meaningful and potentially necessary when
implementing and deploying BLAIDS for real-world applications.

B Background & Notation

In this section, we begin with an overview of several standard quantities in information theory as
well as some useful facts. For more background on information theory, see Cover and Thomas
[2012], Gray [2011]. All random variables are defined on a probability space (Ω,F,P). For any
random variable X : Ω→ X taking values on a measurable space (X ,X), we denote the associated
(marginal) distribution of X as

PX(A) = P(X−1(A)) = P({ω | X(ω) ∈ A}) ∀A ∈ X.

We adopt analogous conventions for the joint and (regular) conditional probability measures,
PX,Y ,PX|Y , with respect to another random variable Y . For three random variables X; Y ; and Z,
we define entropy; conditional entropy; mutual information; and conditional mutual information as
follows:

H(X) = −E[log(PX(·))]
H(Y |X) = −E[log(PY |X(·))]
I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z)

It is also useful to note another definition of mutual information through the Kullback-Leibler (KL)
divergence:

I(X;Y ) = DKL(PX,Y || PX × PY ) DKL(P || Q) =

{∫
log
(
dP
dQ

)
dP P� Q

∞ P 6� Q
,
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where dP
dQ denotes the Radon-Nikodym derivative of probability measure P with respect to Q, with

both measures defined on the same measurable space. Note that PX × PY denotes the product
measure over the associated marginals.

Consider a random variable X : Ω → X taking values on the measurable space (X ,X) with an
associated marginal distribution PX that represents an information source. Similarly, define the
random variable X̂ : Ω→ X̂ that takes values on (X̂ , X̂) and corresponds to a channel output. Given
a known, measurable distortion measure d : X × X̂ 7→ R≥0 and a desired upper bound on distortion
D, the rate-distortion function is defined as:

R(D) = inf
P
X,X̂
∈Λ
I(X; X̂)

quantifying the minimum number of bits (on average) that must be communicated from X across a
channel in order to adhere to the specified expected distortion thresholdD. Here, the infimum is taken
over Λ = {PX,X̂ | ∀A ∈ X : PX,X̂(A×X̂ ) = PX(A) and E[d(X, X̂)] ≤ D} representing the set of

all joint distributions on the product space (X×X̂,X×X̂) whose corresponding marginal distribution
on X matches the original information source PX while also satisfying the constraint on bounded
expected distortion. Intuitively, a higher rate corresponds to requiring more bits of information and
smaller information loss between X and X̂ , enabling higher-fidelity reconstruction (lower distortion);
conversely, lower rates reflect more substantial information loss, potentially exceeding the tolerance
on distortion D.

We will make use of the following facts:
Fact 1 (Chain Rule for Radon-Nikodym Derivatives - Lemma 6.6 [Gray, 2009]). Let µ, ν, ρ be
σ-finite probability measures on (Ω,F). If ν � µ and µ� ρ with corresponding Radon-Nikodym
derivatives dν

dµ ,
dµ
dρ <∞, then ν � ρ and has an associated Radon-Nikodym derivative ρ-a.s.

dν

dρ
=
dν

dµ

dµ

dρ
.

Fact 2 (Gibb’s Inequality - [Cover and Thomas, 2012]). For any two probability measures P,Q on
(Ω,F),

DKL(P || Q) ≥ 0.

Fact 3 (Mutual Information as an Infimum over Product Measures - Corollary 7.12 [Gray, 2011]).
Let PX,Y be a joint probability measure and letM denote the collection of all product measures
MX ×MY . Then

I(X;Y ) = inf
MX×MY ∈M

DKL(PX,Y ||MX ×MY ).

Fact 4 (Uniform Continuity of Entropy - [Cover and Thomas, 2012]). Let P,Q be two discrete
probability distributions (that is, probability mass functions) on the same measurable space (X ,X).
If

||P−Q||1 ≤
1

2
,

then

|H(P)−H(Q)| ≤ ||P−Q||1 log

(
|X |

||P−Q||1

)
.

C Technical Proofs

Lemma 4 (Lemma 1.2 [Csiszár, 1974]).
R(D) = max

β≥0
F(β)− βD

The value of β that achieves this maximum is characterized as being associated with the distortion
threshold D. Conversely, a joint distribution PE,χ that achieves the infimum of F(β) has an associate
rateR(D) = I(PE,χ) where β is associated with D = EPE,χ [d(E , χ)] ,

∫
d(E , χ)dPE,χ(E , χ).
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Proof. The correspondence between values of β and values of D is a geometric argument. We have
that for any fixed D ≥ 0 and for all β ≥ 0,

R(D) = inf
PE,χ∈Λ:E[d(E,χ)]≤D

I(PE,χ)

= inf
PE,χ∈Λ:E[d(E,χ)]≤D

(
I(PE,χ) + βEPE,χ [d(E , χ)]− βEPE,χ [d(E , χ)]

)
≥ inf

PE,χ∈Λ:E[d(E,χ)]≤D

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
− βD

≥ inf
PE,χ∈Λ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
− βD

= F(β)− βD

This inequality coupled with the fact that R(D) is convex implies the existence of a straight line
with slope βD passing through the point (D,R(D)) such that F(β)− βDD = R(D) with no points
above the rate-distortion curve. Consequently, the notion of a particular βD associated withD implies
that for all D′,

R(D′) + βDD
′ ≥ R(D) + βDD.

To see that this lower bound is achieved by the βD value associated with a given threshold D, let
PE,χ be a joint distribution with expected distortion D′ such that for ε > 0,

I(PE,χ) + βDEE,χ[d(E , χ)] ≤ F(βD) + ε.

Using the previous two inequalities, we have

F(βD) + ε ≥ R(D′) + βDD
′ ≥ R(D) + βDD ≥ F(βD)

Since our choice of ε was arbitrary, taking the limit as ε→ 0 yields

F(βD) = R(D) + βDD.

Notably, the Blahut-Arimoto algorithm for computing rate-distortion functions operates with a
specification of β, rather than D. Let P?E,χ be the joint distribution such that

F(β) = inf
PE,χ∈Λ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
= I(P?E,χ) + βEP?E,χ [d(E , χ)].

Defining Dβ = EP?E,χ [d(E , χ)] and Rβ = I(P?E,χ), we have the lower bound

F(β) = Rβ + βDβ ≥ inf
PE,χ∈Λ:E[d(E,χ)]≤Dβ

I(PE,χ) + βDβ = R(Dβ) + βDβ .

For the upper bound, we have

F(β) = inf
PE,χ∈Λ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
= inf

PE,χ∈Λ:E[d(E,χ)]≤Dβ

(
I(PE,χ) + βEPE,χ [d(E , χ)]

)
≤ inf

PE,χ∈Λ:E[d(E,χ)]≤Dβ
(I(PE,χ) + βDβ)

= inf
PE,χ∈Λ:E[d(E,χ)]≤Dβ

I(PE,χ) + βDβ

= R(Dβ) + βDβ

Putting both inequalities together shows that F(β) = R(Dβ) + βDβ , which implies that β is
associated with Dβ andR(Dβ) = F(β)− βDβ .

Lemma 5 (Lemma 1.2 [Csiszár, 1974]). Let Qχ be an arbitrary marginal distribution over χ.
Moreover, let PE,χ be an arbitrary joint distribution over E , χ with an associated marginal distribution
Pχ and take QE,χ to be the joint distribution as defined in Equation 3. Then,

J (PE,χ,Qχ, β) ≥ J (PE,χ,Pχ, β)

J (PE,χ,Qχ, β) ≥ J (QE,χ,Qχ, β)
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Proof. For the first inequality, recall that Pχ is the true marginal distribution over learning targets
induced by PE,χ. Moreover, by definition, we have that

J (PE,χ,Pχ, β) = DKL(PE,χ||PE × Pχ) + βEPE,χ [d(E , χ)] = I(E ;χ) + βEPE,χ [d(E , χ)].

Therefore, by Fact 3, it follows that

J (PE,χ,Qχ, β) = J (PE,χ,Pχ, β) +DKL(Pχ || Qχ).

The inequality then follows immediately by Fact 2.

For the second inequality, we have

J (PE,χ,Qχ, β) = DKL(PE,χ || PE ×Qχ) + βEPE,χ [d(E , χ)]

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ)−

∫
log (exp (−βd(E , χ))) dPE,χ(E , χ)

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ)−

∫
log
(
αQχ,β(E) exp (−βd(E , χ))

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ)−

∫
log

(
dQE,χ

dPE ×Qχ
(E , χ)

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

=

∫
log

(
dPE,χ

dPE ×Qχ
(E , χ) · dPE ×Qχ

dQE,χ
(E , χ)

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

=

∫
log

(
dPE,χ
dQE,χ

(E , χ)

)
dPE,χ(E , χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

= DKL(PE,χ || QE,χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

where the sixth line employs the chain rule for Radon-Nikodym derivatives (Fact 1). Expanding the
second term and using the fact marginal distribution over E induced by QE,χ is the same as PE , we
have∫

log
(
αQχ,β(E)

)
dPE(E) =

∫
log
(
αQχ,β(E)

)
dQE,χ(E , χ)

=

∫
log
(
αQχ,β(E) exp (−βd(E , χ)) exp (βd(E , χ))

)
dQE,χ(E , χ)

=

∫
log
(
αQχ,β(E) exp (−βd(E , χ))

)
dQE,χ(E , χ) +

∫
log (exp (βd(E , χ))) dQE,χ(E , χ)

=

∫
log

(
dQE,χ

dPE ×Qχ
(E , χ)

)
dQE,χ(E , χ) + β

∫
d(E , χ)dQE,χ(E , χ)

= DKL(QE,χ || PE ×Qχ) + βEQE,χ [d(E , χ)]

= J (QE,χ,Qχ, β)

Substituting back and applying Fact 2 once more yields the inequality

J (PE,χ,Qχ, β) = DKL(PE,χ || QE,χ) +

∫
log
(
αQχ,β(E)

)
dPE(E)

= DKL(PE,χ || QE,χ) + J (QE,χ,Qχ, β)

≥ J (QE,χ,Qχ, β)

Lemma 6 (Lemma 2 - [Palaiyanur and Sahai, 2008]). Let E , χ be discrete random variables. Let PE
denote the agent’s current posterior over E and let P̂E be the empirical distribution. If ||PE − P̂E ||1 ≤
D(PE)

4 , then for any D ≥ 0,

|R(D)− R̂(D)| ≤ 7

D(PE)
||P− P̂E ||1 log

(
|Σ||Ξ|

||PE − P̂E ||1

)
.
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Proof. The proof of this augmented result still follows the same argument outlined in Section V of
Palaiyanur and Sahai [2008].

Corollary 2 (Lemma 5 - [Palaiyanur and Sahai, 2008]). For any δ ∈ (0, 1), ε ∈ (0, log(Σ)) let
PE ∈ ∆(Σ) be the current posterior over E . Additionally, let φ−1 denote the inverse of the function

φ : [0, 1
2 ]→ R where φ(t) = t log

(
|Σ||Ξ|
t

)
. If

z ≥ 2

φ−1
(
εD(PE)

7

)2

(
log

(
1

δ

)
+ |Σ| log(2)

)
,

then
P(|R(D)− R̂(D)| ≥ ε) ≤ δ.

Proof.

P(|R(D)−R̂(D)| ≥ ε) ≤ P
(
||PE − P̂E ||1 ≥ φ−1

(
εD(PE)

7

))
≤ 2|Σ| exp

(
−z

2
φ−1

(
εD(PE)

7

))2

,

where the first inequality follows from Lemma 6 and the second inequality follows as Theorem 2.1
of [Weissman et al., 2003]. Setting the left-hand side equal to δ and re-arranging terms yields the
inequality.

D On the Optimality of Rate-Distortion-Theoretic Learning Targets

We examine independent Bernoulli and Gaussian bandits with 50 arms and sweep across numerous β
values to trace the shape of the resulting rate-distortion curves associated with the various learning
targets induced at the first time period. We compare this to the hand-crafted target action of Russo
and Van Roy [2018b], Lu et al. [2021] that simply takes the first action whose average reward Ra is
within ε ≥ 0 of the optimal R

?
:

χ = min{a ∈ A | Ra ≥ R
? − ε}.

Analogously sweeping over values of ε generates the results of Figure 2 where we notice a substan-
tially improved information-performance trade-off from the Blahut-Arimoto algorithm. Such results
highlight the importance of rate-distortion theory in yielding optimized learning targets that may
otherwise be difficult for agent designers to engineer by hand.

(a) Independent Bernoulli bandit with 50 arms. (b) Independent Gaussian bandit with 50 arms.

Figure 2: Comparing target actions computed via the Blahut-Arimoto actions (BLASTS) vs. the
hand-crafted target action (STS) examined by Russo and Van Roy [2018b], Lu et al. [2021].
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