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Abstract

The challenge of temporal credit assignment in reinforcement learning (RL) can be ar-
ticulated as a simple question about the behavior of a sequential decision-making agent:
how does the execution of particular actions from specific states impact observed future
outcomes? Typically, one asks this question for each state-action pair sampled along a
full trajectory within the environment and the future outcome of interest is the cumu-
lative return obtained by an agent. Temporal credit assignment stands as the defining
challenge of the RL paradigm, distinguishing it from supervised learning and bandit
learning settings, where the data-efficiency challenges of generalization and exploration
also arise. Nevertheless, a precise and formal characterization of the credit assignment
problem remains elusive. In this work, we make an initial effort to formally define
the credit assignment problem through the introduction of a performance measure for
RL algorithms, quantifying the overall accuracy of credit attribution (or lack thereof)
between the policies generated by an RL algorithm and the optimal policy. To define
this novel performance criterion, we draw upon foundational information-theoretic and
game-theoretic tools for the partial decomposition of information and the allocation of
group compensation among individual team members.

Twenty-seven lawyers in the room, anybody know ‘post hoc, ergo propter hoc?’

President Josiah Bartlet, The West Wing
Season 1 – Episode 2: Post Hoc, Ergo Propter Hoc

1 Introduction

Ultimately, it is President Bartlet who provides the answer to his own question and translates the
Latin post hoc, ergo propter hoc: “after it, therefore because of it. It means one thing follows
the other, therefore it was caused by the other, but it’s not always true. In fact, it’s hardly ever
true” (Sorkin & Schlamme, 1999). Fundamental to the reinforcement-learning (RL) problem (Sut-
ton & Barto, 1998; Kaelbling et al., 1996; Littman, 2015) is the challenge of temporal credit assign-
ment (Minsky, 1961; Sutton, 1984), wherein an agent strives to understand the impact of individual
steps of behavior on temporally-delayed future outcomes. Historically, the classic mechanisms for
addressing credit assignment in RL are temporal-difference (TD) learning and eligibility traces (Sut-
ton, 1988; Klopf, 1972; Sutton, 1984). Unfortunately, the heuristic codified within these seminal
methods quintessentially embodies a post hoc, ergo propter hoc philosophy as temporal recency
governs which states and actions are credited for the occurrence of unexpected outcomes.

It is perhaps not too difficult to envision a sequential decision-making problem in which recency-
based credit assignment paves the way for inefficient learning. The Behavior Suite for RL (Osband
et al., 2019) offers one such example as part of the bsuite unit tests evaluating how well an RL
agent copes with the challenge of credit assignment. A so-called “umbrella problem” MDP is given
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where (metaphorically) the agent observes a forecast from which it may elect to pick up an umbrella
at the very first timestep; after proceeding with a long-horizon task (modeled as a N -state chain)
where all decisions made are inconsequential, the agent arrives at a terminal state where it may be
raining. In the face of rain, a prepared agent opting to have left the initial state with the umbrella
is given positive reward whereas a damp agent without the umbrella is given a negative reward. As
the free evaluation parameter N increases, it is natural to expect standard TD-methods struggle with
uncovering the correct relationship between the very first action and terminal reward.

We posit that progress on addressing temporal credit assignment problem in RL has stalled due to
a lack of clarity and a missing formal articulation of the credit assignment problem. As we point
out, this is in contrast to generalization and exploration, where clear performance measures for RL
algorithms exist and admit notions of statistical efficiency. To resolve this gap in the literature, we
offer a first take on what statistically-efficient credit assignment means through the introduction of
an information-theoretic performance measure for RL algorithms, quantifying the overall accuracy
of credit attribution (or lack thereof) for the policies generated by an RL algorithm relative to the
optimal policy.

2 Problem Formulation

For any arbitrary set X , we use ∆(X ) to denote the set of all probability distributions with support
on X . For any arbitrary set A, we use P(A) to denote the power set of A. For any N ∈ N, we
denote the index set as [N ] = {1, 2, . . . , N}.

We formulate a sequential decision-making problem as a finite-horizon, episodic Markov Decision
Process (MDP) (Bellman, 1957; Puterman, 1994) defined by M = ⟨S,A,R, T , β,H⟩ ∈ M. S is
a set of states, A is a set of actions, R : S × A → [0, 1] is a reward function providing evaluative
feedback in the unit interval, T : S × A → ∆(S) is a transition function prescribing distributions
over next states, β ∈ ∆(S) is an initial state distribution, and H ∈ N is the maximum episode length
or horizon. Within each of K ∈ N total episodes, the agent acts for H steps beginning with an initial
state s1 ∼ β(·) and, at each timestep h ∈ [H], observes the current state sh ∈ S , selects an action
ah ∈ A, enjoys a reward rh = R(sh, ah), and transitions to a next state sh+1 ∼ T (· | sh, ah).

An agent is characterized by its non-stationary, stochastic policy π : S × [H] → ∆(A), which
encodes a pattern of behavior by mapping individual states and the current timestep to a probability
distribution over actions. We assess the performance of a policy π in MDP M at timestep h ∈
[H] when starting at state s ∈ S and taking action a ∈ A by its associated action-value function

Qπ
M,h(s, a) = E

[
H∑

h′=h

R(sh′ , ah′)
∣∣ sh = s, ah = a

]
. Taking the value function as V π

M,h(s) =

Ea∼πh(·|s)

[
Qπ

M,h(s, a)
]
, we define the optimal policy π⋆ as achieving supremal value V ⋆

M,h(s) =

sup
π∈Π

V π
M,h(s) for all s ∈ S, h ∈ [H] where Π denotes the class of all non-stationary, stochastic

policies. For any episode k ∈ [K], we let τk = (s
(k)
1 , a

(k)
1 , . . . , s

(k)
H , a

(k)
H , s

(k)
H+1) ∼ ρπ

(k)

denote the
random trajectory experienced by the agent executing its policy π(k) in the environment. Meanwhile,
Hk = {τ1, τ2, . . . , τk−1} ∈ H is the entire random history of agent interaction at the start of the kth
episode.

3 Toward Statistically-Efficient Temporal Credit Assignment

In this section, we begin by offering some context that leads to the introduction of a new performance
criterion for RL algorithms. We then proceed with the definition of our performance measure for as-
sessing RL agents solely along the axis of temporal credit assignment. As our performance measure
depends on solutions to an information-theoretic sub-problem, we dedicate subsequent sections to
discussing the sub-problem itself as well as our proposed game-theoretic resolution. Notably, our
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solution concept ties back to our performance criterion, giving a precise intuition for what is being
measured and credence to the resulting notion of statistically-efficient credit assignment.

3.1 Motivation

The primary contribution of this paper is a novel performance measure for RL algorithms. Ab-
stractly, any RL algorithm can be represented via a sequence of policies {π(k)}k∈[K] applied to
a MDP across K episodes, where the policy deployed at each episode π(k) is a function of the
current history Hk. Thus, any measure of a RL algorithm’s proficiency is some abstract function
Λ : ΠK × M → R≥0 whereby the numerical value Λ({π(k)}k∈[K],M) offers some quantitative
evaluation of an RL algorithm with respect to MDP M ∈ M.

The RL literature already offers a number of established choices for the performance criterion Λ.
We begin with brief and informal overviews of two popular types of theoretical analysis in RL
(value-loss and PAC-MDP sample complexity) before giving a more formal presentation of a third
performance criterion (cumulative regret) to juxtapose against our novel performance measure in the
following sub-section. Value-loss analyses (Porteus, 1971; 1975; Singh & Yee, 1994) prove upper
bounds on the difference between the optimal value function V ⋆

M,1 and the value function V π
M,1

induced by some well-chosen alternative policy π. Thus, if one explicitly provides (or even simply
posits the existence of) an algorithm to obtain π within K episodes, a value-loss analysis implies a Λ
only focused on the final policy π(K) without regard for the full learning trajectory. The value-loss
bound itself establishes an upper bound for this particular Λ, guaranteeing approximately-optimal
behavior at termination. The classic simulation lemma (Kearns & Singh, 2002; Lobel & Parr, 2024)
is one such result, which provides the theoretical foundation for model-based RL by ensuring that a
policy obtained via an approximately-precise model of the true MDP yields approximately-optimal
performance in the true MDP. In the context of data-efficient RL, one notable use of value-loss
bounds is to establish the virtues of state abstraction (Li et al., 2006; Abel, 2020) in addressing
generalization, where the alternative policy of interest is the optimal policy obtained under some
aggregated or otherwise compressed state space (Tsitsiklis & Van Roy, 1996; Van Roy, 2006; Abel
et al., 2016; 2018; 2019; Arumugam & Singh, 2022; Turner et al., 2025).

The sample complexity of a RL algorithm (Kakade, 2003) is defined as the total number of timesteps
for which the policy employed by a RL algorithm is worse than ε-suboptimal, for an arbitrary choice
of ε > 0; mirroring the seminal Probably Approximately Correct (PAC) learning framework of
Valiant (1984), PAC-MDP analyses establish that, for any ε, δ > 0, the sample complexity of a RL
algorithm can be upper bounded with probability at least 1 − δ by a polynomial in ε−1, δ−1, and
the relevant MDP quantities (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Kakade, 2003;
Strehl et al., 2006; Strehl & Littman, 2008; Strehl et al., 2009; Lattimore & Hutter, 2012; Dann &
Brunskill, 2015). Just as with value-loss bounds, PAC-MDP algorithms implicitly engage with and
upper bound a performance measure Λ that sums a binary indicator function 1(V π(k)

< V ⋆
M,1 − ε)

across all episodes denoting whether each policy in {π(k)}k∈[K] is worse than ε-optimal. Unlike the
generalization focus of value-loss bounds, PAC-MDP analysis is primarily oriented around assessing
data efficiency through strategic exploration. That said, various works have succeeded in leveraging
such analysis techniques to simultaneously tackle exploration and generalization (Kakade et al.,
2003; Pazis & Parr, 2016; Krishnamurthy et al., 2016; Jiang et al., 2017; Du et al., 2019; 2021;
Jin et al., 2021). Moreover, such PAC-MDP analysis techniques are extensible to the Bayesian RL
setting (Kolter & Ng, 2009).

As a point of contrast with our performance criterion that quantifies the cumulative misal-
location of credit by an RL algorithm relative to the optimal policy of a MDP, we give a
slightly more detailed view into another well-established performance criterion: the cumulative
regret of a RL algorithm. Regret measures the total expected performance shortfall between an
agent’s chosen policy and the optimal policy across all episodes: REGRET({π(k)}k∈[K],M) =

E
[

K∑
k=1

(
V ⋆
M,1(s1)− V π(k)

M,1 (s1)
)]

. It is inevitable that an agent must incur some amount of regret
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in order to explore the environment and synthesize optimal behavior. Thus, cumulative regret essen-
tially quantifies the speed with which an RL algorithm solves the exploration challenge.

The Bayesian RL setting (Bellman & Kalaba, 1959; Duff, 2002; Ghavamzadeh et al., 2015) recog-
nizes that the underlying MDP is entirely unknown to the agent and, therefore, a random variable.
The agent is thus endowed with a prior distribution P(M ∈ ·) to reflect initial uncertainty in the
true MDP. An alternative performance criterion considerate of this reality is the Bayesian regret,
which simply integrates out the randomness in M with respect to an agent’s (well-specified) prior:
BAYESREGRET({π(k)}k∈[K]) = E

[
REGRET({π(k)}k∈[K],M)

]
.

A broad range of RL algorithms have been shown to yield statistically-efficient exploration through
frequentist (Agrawal & Jia, 2017; Dann et al., 2017; Jin et al., 2018) and/or Bayesian (Osband
et al., 2013; Osband & Van Roy, 2014; Abbasi-Yadkori & Szepesvari, 2014; Ouyang et al., 2017;
Osband & Van Roy, 2017; Lu & Van Roy, 2019; Arumugam & Van Roy, 2022; Lu et al., 2023)
regret analysis. Similar to PAC-MDP analyses, a number of works also find additional opportunities
to integrate consideration for generalization as well; for instance, via state abstraction (Dong et al.,
2019) or the Eluder dimension (Russo & Van Roy, 2013; Wen & Van Roy, 2013; Osband & Van Roy,
2014; Wang et al., 2020b; Huang et al., 2021; Li et al., 2022).

A surprising observation is that none of the aforementioned analyses seem to engage with the chal-
lenge of temporal credit assignment in an explicit, tangible manner. That is, to the best of the
authors’ knowledge, there is no specific point in any of the aforementioned analyses that one could
substantively point to as “handling” or “accounting for” how an RL algorithm in question deals with
credit assignment. One plausible takeaway from this realization is that, perhaps, temporal credit
assignment is not central to statistically-efficient RL. While not an impossibility, such a hypothesis
would be counterintuitive, especially at a moment in time when one of the primary applications of
RL involves selecting hundreds upon thousands of actions (tokens) only to be met with a binary ter-
minal reward (Stiennon et al., 2020; Ouyang et al., 2022); arguably, the challenge of temporal credit
assignment is more pivotal now than ever before in the history of RL. An alternative takeaway is that
all the aforementioned performance criteria are so widely used because, at some point, one or more
RL researchers merely decided those measures captured a dimension of efficient decision-making
that matters and was worth studying. Consequently, if the current issue is that we lack a formal and
coherent performance measure for evaluating the efficacy of credit assignment, then perhaps it is
simply incumbent upon the RL community to make one. It is in this spirit that we here introduce the
misallocation of a RL algorithm.

3.2 Defining Misallocation

Paralleling regret as an evaluation metric for RL algorithms, our proposed performance criterion
will be a cumulative discrepancy across all episodes between the optimal MDP policy π⋆ and the
episode policy π(k). Unlike regret, however, the discrepancy measured will not be with respect to
performance via the value function induced by each policy. Instead, we will define an information-
theoretic statistic for each policy that quantifies how much each step of behavior impacts the cumu-
lative return. Under the premise that the optimal policy represents the ideal treatment of the credit
assignment problem, it then follows that any deviation from the statistic computed for the optimal
policy constitutes an error, analogous to episodic regret, which our performance criterion will accu-
mulate. We begin by defining this statistic for capturing the credit assigned by a fixed policy about
the cumulative return to individual steps of behavior. For brief background on information theory,
please see Appendix A.

For a fixed policy within a MDP, a key observation is that the assignment of credit or blame repre-
sents an instance of a more fundamental statistical challenge: decomposing the influence or informa-
tion that one collection of random variables exert over a single target random variable. Any policy
π in MDP M has an associated distribution over trajectories ρπ , for which we let τπ ∼ ρπ be a
random variable denoting a single trajectory obtained by executing π in M. Similar to the literature
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on distributional RL (Bellemare et al., 2017), we use Z(τπ) =
H∑

h=1

R(sh, ah) to denote the random

cumulative return obtained with trajectory τπ . Intuitively, this return random variable can be related
back to the classic value function induced by π via an expectation: V π

M,1(s) = E [Z(τπ) | s1 = s].
One way to formalize the total influence of agent behavior on observed returns is via the mutual
information I(Z(τπ); τπ) between a random trajectory generated by the policy and the random cu-
mulative return. However this quantity, while comprehensive, is monolithic and blurs the contribu-
tions of individual steps of behavior and overall performance. The trajectory is itself a collection
of state-action valued random variables τ = (s1, a1, . . . , sH , aH , sH+1) and, for brevity, we may
define one random variable ξπh = (sh, ah) ∈ S ×A for each timestep h ∈ [H]1 (whose distribution
is obtained by marginalizing ρπ).

If all I(Z(τπ); ξ
π
1 , . . . , ξ

π
H) bits of information could be decomposed on a per-timestep basis, it

would yield an accurate profile of how the constituent states and decisions in τπ from policy π
impact the cumulative trajectory return Z(τπ). This problem of partial information decomposition
(PID) (Williams & Beer, 2010) has been studied for many years in the information-theory literature.
Solving a PID problem instance is itself an open research challenge that continues to be an active
area of study in recent years (Bertschinger et al., 2013; 2014; Griffith & Koch, 2014; Timme et al.,
2014; Griffith & Ho, 2015; Olbrich et al., 2015; Banerjee & Griffith, 2015; James & Crutchfield,
2017; Lizier et al., 2018; Ay et al., 2021; Kolchinsky, 2022; Venkatesh et al., 2023; Kolchinsky,
2024; Murphy & Bassett, 2024). For the moment, we defer the finer details of PID and its solution
so that we may proceed with the definition of our performance measure. In the next sub-section, we
present a particular method for addressing PID such that a corresponding solution yields a natural
interpretation in the context of RL and credit assignment.

We define a black-box function PID : Π × M → RH
≥0 that computes any partial information de-

composition, such that each component h ∈ [H] of the vector PID(π,M) ∈ RH
≥0 quantifies the

average dependence (measured in bits of information) between the random state-action pair ξπh vis-
ited by policy π at timestep h and the cumulative return Z(τπ) obtained. Assuming we can solve any
PID problem instance, we are able to introduce our novel performance criterion for assessing how
well an RL algorithm addresses the temporal credit assignment problem. We define the cumulative
misallocation of an RL algorithm, or MALLOC for short, as

MALLOC({π(k)}k∈[K],M) = E

[
K∑

k=1

||PID(π⋆,M)− PID(π(k),M)||1

]
.

If the optimal policy yields a particular dependency structure between visited states; selected actions;
and optimal returns, then it is natural to interpret good credit assignment as expediently arriving at
policies that adhere to a similar (if not identical) structure. The PID solution of each policy π(k) with
respect to MDP M gives a statistic that encodes this dependency structure quantitatively, while the
misallocation simply accumulates the discrepancy between those structures and that of the optimal
policy. As the mapping between policies and value functions is many-to-one (Dadashi et al., 2019),
a more technically-correct definition of misallocation might (charitably) benchmark with respect to
nearest optimal policy (formally, taking an infimum over all optimal policies π⋆ ∈ Π⋆ ≜ {π ∈ Π |
||V ⋆

M,1 − V π
M,1||∞ ≤ 0}), though we omit this more verbose definition for clarity.

Just as the (frequentist) regret presumes full knowledge of the underlying MDP transition func-
tion and reward function, so too does our misallocation criterion; adopting the Bayesian RL set-
ting and mirroring the Bayesian regret, we may analogously define the Bayesian misallocation as
BAYESMALLOC({π(k)}k∈[K]) = E

[
MALLOC({π(k)}k∈[K],M)

]
. In the next sub-section, we ex-

amine fundamental tools from game theory to elucidate the partial information decomposition prob-
lem and its resulting solution used within the definition of misallocation.

1Note this drops the terminal state sH which, due to the dependence of rewards solely on the state-action pair R(s, a), is
irrelevant. Transition-based rewards R(s, a, s′) can be accounted for by adding a ξH+1 random variable with a null action.
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3.3 Partial Information Decomposition

The previous section establishes misallocation as an information-theoretic measure for assessing
the efficacy of an RL algorithm in addressing temporal credit assignment, provided access to an
oracle solution for PID problems. In this section, we clarify how and why the PID between a
policy’s cumulative return Z(τπ) and state-action pairs visited in each timestep {ξπh}h∈[H] conveys
something meaningful and quantitatively substantive about assigning credit or blame to behavior.
For the ease of exposition, it is natural to begin with restricted focus on the simplest case of H = 2,
yielding the smallest possible temporal delay between behavior and outcomes.

With a horizon H = 2, the total information or influence between states and actions of any policy
π and cumulative returns is given by the mutual information: I(Z(τπ); ξ

π
1 , ξ

π
2 ). The chain rule of

mutual information yields two identities for decomposing this global information term:

I(Z(τπ); ξ
π
1 , ξ

π
2 ) = I(Z(τπ); ξ

π
1 ) + I(Z(τπ); ξ

π
2 | ξπ1 ) = I(Z(τπ); ξ

π
2 ) + I(Z(τπ); ξ

π
1 | ξπ2 ).

One might wonder why such a decomposition into a (more-refined) mutual information and con-
ditional mutual information terms fails to provide a solution to PID. While this certainly is one
kind of decomposition, the fidelity of this decomposition to the individual contributions of ξπ1 and
ξπ2 is entirely dependent on the relationship between either I(Z(τπ); ξ

π
1 ) and I(Z(τπ); ξ

π
1 | ξπ2 ) or

I(Z(τπ); ξ
π
2 ) and I(Z(τπ); ξ

π
2 | ξπ1 ).

In the case when either I(Z(τπ); ξ
π
1 ) ≥ I(Z(τπ); ξ

π
1 | ξπ2 ) or I(Z(τπ); ξ

π
2 ) ≥ I(Z(τπ); ξ

π
2 | ξπ1 ),

we may upper bound the chain rule expansion above and obtain I(Z(τπ); ξ
π
1 , ξ

π
2 ) ≤ I(Z(τπ); ξ

π
1 ) +

I(Z(τπ); ξ
π
2 ). This inequality conveys that, while the cumulative information or influence between

behavior and returns is I(Z(τπ); ξ
π
1 , ξ

π
2 ), a subset of those bits are redundantly present in both

ξπ1 and ξπ2 individually. Consequently, aggregating information via I(Z(τπ); ξ
π
1 ) + I(Z(τπ); ξ

π
2 )

ends up double counting these redundant bits. In the alternative case when either I(Z(τπ); ξ
π
1 ) ≤

I(Z(τπ); ξ
π
1 | ξπ2 ) or I(Z(τπ); ξ

π
2 ) ≤ I(Z(τπ); ξ

π
2 | ξπ1 ), we may lower bound the chain rule expan-

sion above and obtain I(Z(τπ); ξ
π
1 , ξ

π
2 ) ≥ I(Z(τπ); ξ

π
1 )+I(Z(τπ); ξ

π
2 ). This inequality conveys that

the combined information offered individually by ξπ1 and ξπ2 in isolation is insufficient to account for
the overall information between behavior and returns I(Z(τπ); ξ

π
1 ). This implies that the residual,

unaccounted bits of information are only holistically accessible through the combination of (ξπ1 , ξ
π
2 )

and cannot otherwise be obtained without this synergy.

Recognizing these deficiencies in classic information-theoretic quantities, pioneering work by
Williams & Beer (2010) introduced new information-theoretic quantities at the requisite level of
granularity needed for PID. In the context of the H = 2 case, there is the unique information
U(Z(τπ); ξ

π
1 | ξπ2 ) provided by ξπ1 about Z(τπ) that is not offered by ξπ2 ; conversely, we also have

the unique information U(Z(τπ); ξ
π
2 | ξπ1 ) provided by ξπ2 about Z(τπ) that is not offered by ξπ1 .

There is the redundant information R (Z(τπ); ξ
π
1 , ξ

π
2 ) identically provided by each of ξπ1 and ξπ2

about Z(τπ). Finally, there is the synergistic information S(Z(τπ); ξ
π
1 , ξ

π
2 ) jointly provided by ξπ1

and ξπ2 about Z(τπ) that cannot be obtained from either one in isolation. As the above chain rule
decompositions illustrate, standard mutual information blends distinct types of information

I(Z(τπ); ξ
π
1 ) = U(Z(τπ); ξ

π
1 | ξπ2 ) + R (Z(τπ); ξ

π
1 , ξ

π
2 )

I(Z(τπ); ξ
π
2 | ξπ1 ) = U(Z(τπ); ξ

π
2 | ξπ1 ) + S(Z(τπ); ξ

π
2 , ξ

π
1 ),

with analogous equations holding mutatis mutandis for I(Z(τπ); ξ
π
1 ) and I(Z(τπ); ξ

π
1 | ξπ2 ). In

short, research into PID aims to provide a definition for one of the three more-granular informa-
tion quantities (Bertschinger et al., 2014; Griffith & Koch, 2014; Griffith & Ho, 2015), such that
the others may be obtained systematically using the previous two equations and the expansion for
I(Z(τπ); ξ

π
1 , ξ

π
2 ). For an arbitrary horizon H , one may obtain similar decompositions of the mono-

lithic I(Z(τπ); ξ
π
1 , . . . , ξ

π
H) by recursively applying the pairwise definitions above; just as the chain

rule of mutual information admits multiple decompositions of I(Z(τπ); ξ
π
1 , . . . , ξ

π
H), there are many

equivalent decompositions into unique, redundant, and synergistic information terms.
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3.4 Shapley Values for Information-Theoretic Credit Assignment

Our proposed approach for solving arbitrary instances of the PID problem is to reduce each instance
to a coalition game and leverage a classic game-theoretic mechanism for equitably distributing group
compensation among individual team members. A coalition is defined by a group of H ∈ N indi-
viduals and a profit function ω : P([H]) → R, mapping coalitions of team members to real values
and where ω(∅) = 0. Intuitively, for any coalition of team members A ⊆ [H], ω(A) quantifies the
value of payoff obtained by those members of the coalition A as a result of their cooperation. A nat-
ural question arises when, after all team members cooperate together and obtain a cumulative value
of ω([H]), how this collective payoff should be fairly dispensed to the individual participants? A
classic resolution from the economics and game-theory literatures to this credit assignment problem
is prescribed by Shapley values (Shapley, 1953) which, under a fixed and known payoff function ω,
distributes credit according to a function φ : [H] → R defined as

φ(h) =
1

H

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

(ω(A ∪ {h})− ω(A)) , ∀h ∈ [H].

In words, the Shapley value associated with an individual h ∈ [H] averages the contributions of the
individual h across all possible teams that could be formed without h from the remaining members
of [H]\{h}. While this intuition is convenient, widespread adoption of Shapley values as a solution
to this problem largely stems from its unique adherence (Dubey, 1975) to several desiderata that one
ought to naturally demand from any measure of credit attribution. Due to space constraints, we defer
a review of these desiderata to Appendix B and proceed with leveraging Shapley values to solve PID
problems.

We reduce any instance of PID I(Z(τπ); {ξπh}h∈H) for temporal credit assignment to a coalition
game with H players and payoff function ω(A) = I(Z(τπ); {ξπh′}h′∈A), for any A ∈ P([H]). In
doing so, we then obtain a solution for PID via the individual Shapley values associated with each
timestep: PID(π,M) = [φπ(1), . . . , φπ(H)] ∈ RH . While we are not the first to establish a
connection between these ideas (Ay et al., 2021), we do maintain fidelity to the original definition
of Shapley values (without imposing constraints on the ordering/hierarchy of random variables that
call for an alternative generalization of Shapley values (Faigle & Kern, 1992)) and, to the best of our
knowledge, are the first to bring these ideas to bear on temporal credit assignment in single-agent
RL. Crucially, the definition of Shapley values given above then yields a natural and interpretable
meaning to the individual components of the PID(π,M) vector in terms of unique, redundant, and
synergistic information (please see Appendix D for the proof).

Proposition 1. For any policy π; MDP M; and timestep h ∈ [H], define ξπ−h ≜ {ξπh′}h′∈[H]\{h}

and, for any subset A ⊆ [H], ξπA ≜ {ξπh′}h′∈A. The Shapley values for PID at timestep h satisfy

φπ(h) = U(Z(τπ); ξ
π
h | ξπ−h) +H−1

R (Z(τπ); ξ
π
h , ξ

π
−h) +

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

S(Z(τπ); ξ
π
h , ξ

π
A)

 .

Proposition 1 highlights that, according to the desiderata uniquely satisfied by Shapley values for
coalition games, the credit assigned to the states and actions visited by policy π and timestep h for
cumulative returns Z(τπ) is equal to the unique information provided by behavior at that timestep
(not contained anywhere else in the trajectory) as well as equitable portions of the redundant and
synergistic information provided by behavior at h and other timesteps along the trajectories gener-
ated by π. For the simple H = 2 case, this yields similar results for each timestep, with h = 1 as
φ(1) = U(Z(τπ); ξ

π
1 | ξπ2 ) + 1

2 (R (Z(τπ); ξ
π
1 , ξ

π
2 ) + S(Z(τπ); ξ

π
1 , ξ

π
2 )) .

We have made a first attempt at a formal articulation of the temporal credit assignment problem via
the cumulative misallocation of a RL algorithm. Through a game-theoretic solution for defining
this information-theoretic performance criterion, we offer one notion of what it means for a RL
algorithm to achieve statistically-efficient credit assignment.
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A Information Theory

Here we introduce various concepts in probability theory and information theory (Shannon, 1948)
used throughout this paper. We encourage readers to consult (Cover & Thomas, 2012; Gray, 2011;
Polyanskiy & Wu, 2022; Duchi, 2024) for more background.

All random variables are defined on a probability space (Ω,F ,P). We define the mutual information
between any two random variables X,Y through the Kullback-Leibler (KL) divergence:

I(X;Y ) = DKL(P((X,Y ) ∈ ·) || P(X ∈ ·)×P(Y ∈ ·)) DKL(P || Q) =

{∫
log
(

dP
dQ

)
dP P ≪ Q

+∞ P ̸≪ Q
,

where P and Q are both probability measures on the same measurable space and dP
dQ denotes the

Radon-Nikodym derivative of P with respect to Q. An analogous definition of conditional mutual
information holds through the expected KL-divergence for any three random variables X,Y, Z:

I(X;Y | Z) = E [DKL(P((X,Y ) ∈ · | Z) || P(X ∈ · | Z)× P(Y ∈ · | Z))] .

With these definitions in hand, we may define the entropy and conditional entropy for any two
random variables X,Y as

H(X) = I(X;X) H(Y | X) = H(Y )− I(X;Y ).

This yields the following identities for mutual information and conditional mutual information for
any three arbitrary random variables X , Y , and Z:

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y |X),

I(X;Y |Z) = H(X|Z)−H(X | Y, Z) = H(Y |Z)−H(Y |X,Z).

Through the chain rule of the KL-divergence and the fact that DKL(P || P ) = 0 for any probability
measure P , we obtain another equivalent definition of mutual information,

I(X;Y ) = E [DKL(P(Y ∈ · | X) || P(Y ∈ ·))] ,

as well as the chain rule of mutual information: I(X;Y1, . . . , Yn) =
n∑

i=1

I(X;Yi | Y1, . . . , Yi−1).

B Coalition Games & Shapley Values

Consider a team comprised of N ∈ N individuals and a profit function ω : P([N ]) → R mapping
coalitions of team members to real values with ω(∅) = 0. Intuitively, for any coalition of team
members A ⊆ [N ], ω(A) quantifies the value or payoff obtained by the members of the coalition
as a result of their cooperation. A natural question arises when, after all team members cooperate
together and obtain a value of ω([N ]), how this collective payoff should be fairly dispensed to the
individual participants? A classic resolution to this credit assignment problem from the economics
and game-theory literature is prescribed by Shapley values (Shapley, 1953) which, for a fixed and
known payoff function ω, distributes credit according to a function φ : [N ] → R defined as

φ(i) =
1

N

∑
A⊆[N ]\{i}

(
N − 1

|A|

)−1

(ω(A ∪ {i})− ω(A)) , ∀i ∈ [N ].

In words, the Shapley value associated with an individual i ∈ [N ] averages the contributions of the
individual i across all possible teams that could be formed without i from the remaining members of
[N ] \ {i}. While this intuition is convenient, widespread adoption of Shapley values as a solution to
this problem largely stems from its unique adherence (Dubey, 1975) to the following five desiderata
that one ought to naturally demand from any measure of credit attribution.
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Fact 1 (Efficiency). For any N ∈ N,

ω([N ]) =

N∑
i=1

φ(i).

That is, the sum of payoffs allocated to each individual team member in [N ] is equal to the total
payoff attributed to the entire team, ω([N ]).

Fact 2 (Symmetry). If

ω(A+ {i}) = ω(A+ {j}), ∀A ⊆ [N ] \ {i, j},

then φ(i) = φ(j). In words, if any two individuals i, j ∈ [N ] offer the same marginal contribution
to any team formed by the remaining members of [N ], then their individual Shapley values will be
the same.

Fact 3 (Dummy). If
ω(A+ {i}) = ω(A), ∀A ⊆ [N ] \ {i},

then φ(i) = 0. In words, an individual i ∈ [N ] whose marginal contribution to any team not
including themselves is negligible accordingly has a Shapley value of zero.

Fact 4 (Additivity). If there are two distinct payoff functions, ω1, ω2 ∈ {P([N ]) → R}, yielding
Shapley values φ1, φ2 ∈ {[N ] → R}, respectively, then the payoff function

ω(A) = ω1(A) + ω2(A), ∀A ⊆ [N ]

has Shapley values
φ(i) = φ1(i) + φ2(i), ∀i ∈ [N ].

Fact 5 (Linearity). If a payoff function ω : P([N ]) → R has Shapley values φ : [N ] → R, then the
payoff function

ωα(A) = α · ω(A), ∀A ⊆ [N ]

has Shapley values
φα(i) = α · φ(i), ∀i ∈ [N ]

for all α ∈ R.

C Related Work

Tackling temporal credit assignment via TD-learning and eligibility traces (Sutton, 1988; Klopf,
1972; Sutton, 1984) was, arguably, the starting point for computational RL research. Both found
widespread success in the early days of reinforcement learning, spanning empirical (Barto et al.,
1983; Tesauro, 1991; 1992; Watkins & Dayan, 1992; Lin, 1992; Peng & Williams, 1994) and the-
oretical (Sutton, 1984; Dayan, 1992; Jaakkola et al., 1994; Tsitsiklis, 1994; Dayan & Sejnowski,
1994; Sutton & Singh, 1994; Singh & Sutton, 1996; Bradtke & Barto, 1996; Kearns & Singh, 2000)
contributions. In the years since, however, a lack of holistic satisfaction with classic TD-learning
and eligibility traces has given rise to numerous extensions and adaptations.

Among these is a blend of both theoretical and empirical work on extending TD-methods to off-
policy learning (with or without function approximation) (Precup et al., 2000; 2001; Sutton et al.,
2008; Kolter, 2011; Sutton et al., 2014; Van Hasselt et al., 2014; Seijen & Sutton, 2014; Mahmood
et al., 2014; van Hasselt & Sutton, 2015; Chelu et al., 2022) and gradient-based function approxi-
mation (Maei et al., 2009; Sutton et al., 2009; Maei, 2011). Additionally, there have been similar
efforts to extend eligibility traces as well (Pitis, 2018; van Hasselt et al., 2021; Gupta et al., 2024);
the expected eligibility trace of van Hasselt et al. (2021) bears particular relevant to the information-
theoretic perspective on credit assignment adopted in this work, by recognizing the value of assign-
ing credit to the trajectory random variable rather than a single realization of a random trajectory.
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While these methods maintain fidelity to classic TD-learning as the underlying mechanism for credit
assignment, another line of work takes DQN (Mnih et al., 2015) with experience replay (Lin, 1992)
as a starting point and considers extensions that yield more scalable solutions to temporal credit
assignment (Schaul et al., 2016; Daley & Amato, 2019; Elelimy et al., 2025; Pignatelli et al., 2023).
The overall key distinction between these works and our contributions is an adherence to classic
TD-learning an making an effort to operate within the confines of what it affords; meanwhile, this
work advocates for a fundamental break from these classic ideas in favor of a more general treatment
of credit assignment that might clarify a precise connection with data-efficient RL.

Fundamental challenges in the core of TD-learning have already been raised in the literature.
Konidaris et al. (2011) elucidate how the λ-return central to TD(λ) can be derived as a maximum-
likelihood estimator of the return under three faulty assumptions that realistically never hold in
practice and, along with Thomas et al. (2015), offer potential remedies via alternative weighted
combinations of n-step returns. Daley et al. (2024) conduct a deep theoretical dive into the recency
heuristic that underlies TD-learning and finds it to be inherent to any convex combination of n-
step returns and, furthermore, find it to be inextricable from current TD-learning without risk of
divergence. Perhaps the most cogent efforts to resolve the dependence on temporal recency within
TD-learning comes in the form of emphatic TD (Sutton et al., 2016; Mahmood et al., 2015; Yu,
2015; Hallak et al., 2016; Jiang et al., 2021; Klissarov et al., 2022), where an interest function mod-
ulates the contributions of individual states to each TD-update. Unfortunately, this interest function
is deemed to be user-specified, leaving open the question of how the saliency of states to TD-updates
ought to be determined in a data-driven way to facilitate sample-efficient RL overall.

In the same spirit of this paper to challenge the core foundations of credit assignment, there are a
few diverse works that appeal to a variety of alternative ideas including importance sampling (Haru-
tyunyan et al., 2019; Velu et al., 2023), return redistribution (Arjona-Medina et al., 2019), stochastic
computation graphs (Weber et al., 2019), and information theory (Arumugam et al., 2021). While
the final information-theoretic lens is most related to our perspective, it only succeeds in establishing
useful identities and connections between information theory and credit assignment. Overall, all of
these works still leave open the question of how these connections genuinely impact data-efficient
RL.

Finally, we note in passing that, while the focus of this work is exclusively on single-agent RL,
multi-agent RL (Albrecht et al., 2024) has emerged as a setting where the topic of credit assignment
is discussed with perhaps greater frequency (Chang et al., 2003) in the context of attributing credit
among a team of cooperating agents. In this context, existing work has been done to leverage
Shapley values for performing such credit assignment (Wang et al., 2020a). While this additional
axis to the credit assignment problem in multi-agent RL undoubtedly has impact on data efficiency
in that setting, it is orthogonal to the data efficiency concerns studied in this work. Nevertheless, one
might naturally hope that clarity on the relationship between temporal credit assignment and sample
efficiency in single-agent RL might yield additional promising insights for multi-agent RL as well.

D Proof of Proposition 1

Proposition 1. For any policy π; MDP M; and timestep h ∈ [H], define ξπ−h ≜ {ξπh′}h′∈[H]\{h}

and, for any subset A ⊆ [H], ξπA ≜ {ξπh′}h′∈A. The Shapley values for PID at timestep h satisfy

φπ(h) = U(Z(τπ); ξ
π
h | ξπ−h) +H−1

R (Z(τπ); ξ
π
h , ξ

π
−h) +

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

S(Z(τπ); ξ
π
h , ξ

π
A)

 .

Proof. Recall that the Shapley value for a coalition game consisting of H players is defined as

φ(h) =
1

H

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

(ω(A ∪ {h})− ω(A)) , ∀h ∈ [H].
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Further recall that our profit function ω : P([H]) → R is defined as

ω(A) = I(Z(τπ); ξ
π
A), ∀A ⊆ [H].

Just by substituting into the definition of the Shapley value and applying the chain rule of mutual
information, we see that

φπ(h) =
1

H

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

(ω(A ∪ {h})− ω(A))

=
1

H

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1 (
I(Z(τπ); ξ

π
A∪{h})− I(Z(τπ); ξ

π
A)

)

=
1

H

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

(I(Z(τπ); ξ
π
A) + I(Z(τπ); ξ

π
h | ξπA)− I(Z(τπ); ξ

π
A))

=
1

H

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

I(Z(τπ); ξ
π
h | ξπA)

At this point, we note that we may (equivalently) decompose the Shapley value into a sum over
subsets of fixed size:

φπ(h) =
1

H

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

I(Z(τπ); ξ
π
h | ξπA) =

1

H

H−1∑
k=0

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

I(Z(τπ); ξ
π
h | ξπA).

Pulling out the first term of the sum and applying the identity for mutual information in terms of
unique and redundant information, we have

φπ(h) =
1

H

H−1∑
k=0

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

I(Z(τπ); ξ
π
h | ξπA)

=
1

H
I(Z(τπ); ξ

π
h ) +

1

H

H−1∑
k=1

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

I(Z(τπ); ξ
π
h | ξπA)

=
1

H
(U(Z(τπ); ξ

π
h | ξπ−h) + R (Z(τπ); ξ

π
h , ξ

π
−h)) +

1

H

H−1∑
k=1

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

I(Z(τπ); ξ
π
h | ξπA).

Similarly, we may expand the conditional mutual information term with the identity for unique and
synergistic information:

1

H

H−1∑
k=1

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

I(Z(τπ); ξ
π
h | ξπA) =

1

H

H−1∑
k=1

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

(U(Z(τπ); ξ
π
h | ξπ−h) + S(Z(τπ); ξ

π
h , ξ

π
A)) .

Focusing on the unique information term in isolation, we may simplify to obtain

1

H

H−1∑
k=1

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

U(Z(τπ); ξ
π
h | ξπ−h) = U(Z(τπ); ξ

π
h | ξπ−h) ·

1

H

H−1∑
k=1

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

1

︸ ︷︷ ︸
=(H−1

k )

= U(Z(τπ); ξ
π
h | ξπ−h) ·

1

H

H−1∑
k=1

(
H − 1

k

)−1

·

(
H − 1

k

)

= U(Z(τπ); ξ
π
h | ξπ−h) ·

1

H

H−1∑
k=1

1

=
H − 1

H
U(Z(τπ); ξ

π
h | ξπ−h).
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Putting everything together, we have

φπ(h) =
1

H
(U(Z(τπ); ξ

π
h | ξπ−h) + R (Z(τπ); ξ

π
h , ξ

π
−h)) +

1

H

H−1∑
k=1

(
H − 1

k

)−1 ∑
A⊆[H]\{h}

|A|=k

I(Z(τπ); ξ
π
h | ξπA)

= U(Z(τπ); ξ
π
h | ξπ−h) +

1

H

R (Z(τπ); ξ
π
h , ξ

π
−h) +

∑
A⊆[H]\{h}

(
H − 1

|A|

)−1

S(Z(τπ); ξ
π
h , ξ

π
A)

 .
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