
Toward Efficient Exploration by Large Language Model Agents

Dilip Arumugam 1 Thomas L. Griffiths 1 2

Abstract
A nascent area within reinforcement learning (RL)
is the design of sequential decision-making agents
centered around large language models (LLMs).
While autonomous decision-making agents pow-
ered by modern LLMs could facilitate numerous
real-world applications, such successes demand
agents that are capable of data-efficient RL. One
key obstacle to achieving data efficiency in RL
is exploration, a challenge that we demonstrate
many recent proposals for LLM agent designs
struggle to contend with. Meanwhile, classic algo-
rithms from the RL literature known to gracefully
address exploration require technical machinery
that is challenging to operationalize in purely nat-
ural language settings. In this work, rather than re-
lying on finetuning or in-context learning to coax
LLMs into implicitly imitating a RL algorithm,
we illustrate how LLMs can be used to explicitly
implement an existing RL algorithm (Posterior
Sampling for Reinforcement Learning) whose ca-
pacity for statistically-efficient exploration is al-
ready well-studied. We offer empirical results
demonstrating how our LLM-based implementa-
tion of a known, data-efficient RL algorithm can
be considerably more effective in natural language
tasks that demand prudent exploration.

1. Introduction
Large language models (LLMs) have rapidly permeated
many areas of machine learning, demonstrating proficiency
across a broad range of tasks (Bommasani et al., 2021;
Achiam et al., 2023; Touvron et al., 2023; Team et al., 2023;
Hurst et al., 2024; Jaech et al., 2024). This has inspired
recent work studying how LLMs can best be used to solve
sequential decision-making problems. These efforts have
led to the introduction of new designs for LLM agents that

1Department of Computer Science, Princeton University.
2Department of Psychology, Princeton University. Correspondence
to: Dilip Arumugam <dilip.a@cs.princeton.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

aim to learn optimal behavior through trial-and-error in-
teraction within natural language environments (Yao et al.,
2023; Shinn et al., 2024; Monea et al., 2024; Klissarov et al.,
2024). While details vary by approach, broadly speaking
these new agent designs involve one or more LLMs that
interact to ultimately select actions at each timestep within
the environment. However, such agents still reside in the
classic RL setting (Sutton & Barto, 1998) and, consequently,
must still grapple with the fundamental obstacles to data
efficiency (generalization, exploration, & credit assignment)
that the RL literature has studied for decades.

While composing LLMs to arrive at new agent designs is
the current norm, we propose that an alternative strategy
is to re-examine existing RL algorithms and consider how
LLMs might implement them in otherwise inaccessible en-
vironments. An RL algorithm consists of specifying inputs
and detailing a sequence of steps for determining behavior
at each time period. Why should the emergence and prolif-
eration of LLMs change the fundamental principles of agent
design? Instead, perhaps LLMs can be used to create a new,
potentially-inexact incarnation of existing RL algorithms
and the subroutines needed to implement them.

In this work, we focus on data-efficient RL with LLMs and
isolate the key challenge of exploration. We demonstrate
how modern LLMs afford a contemporary implementation
of an existing RL algorithm, Posterior Sampling for Rein-
forcement Learning (PSRL) (Strens, 2000; Osband et al.,
2013), that is both well-studied and whose capacity for good
exploration is already known to yield provably-efficient RL
in a number of problem classes. We find that, in environ-
ments with deterministic transition dynamics, our LLM-
based implementation of PSRL retains the strong explo-
ration properties that, up to this point, have not only been
primarily restricted to tabular domains but also been absent
in current, more-traditional designs for LLM agents. Our
work underscores the importance of addressing exploration
in the design of LLM agents, illustrates the considerable
value that decades of RL research have to offer data-efficient
decision-making with LLMs, and establishes a key distinc-
tion between LLMs that implement a RL algorithm versus a
RL algorithm that is implemented with LLMs.

1

Toward Efficient Exploration by Large Language Model Agents

2. Problem Formulation
For any arbitrary set X , we use ∆(X) to denote the set of all
probability distributions with support on X . For any N ∈ N,
we denote the index set as [N] = {1, 2, . . . , N}.

We formulate a sequential decision-making problem
as a finite-horizon, episodic Markov Decision Process
(MDP) (Bellman, 1957; Puterman, 1994) defined by M =
⟨S,A,R, T , β,H⟩. S is a set of states, A is a set of actions,
R : S × A → [0, 1] is a reward function providing eval-
uative feedback in the unit interval, T : S × A → ∆(S)
is a transition function prescribing distributions over next
states, β ∈ ∆(S) is an initial state distribution, and H ∈ N
is the maximum episode length or horizon. Within each of
K ∈ N total episodes, the agent acts for H steps beginning
with an initial state s1 ∼ β(·) and, at each timestep h ∈ [H],
observes the current state sh ∈ S , selects an action ah ∈ A,
enjoys a reward rh = R(sh, ah), and transitions to a next
state sh+1 ∼ T (· | sh, ah).

An agent is characterized by its non-stationary, stochastic
policy π : S × [H] → ∆(A), which encodes a pattern
of behavior by mapping individual states and the current
timestep to a probability distribution over actions. We as-
sess the performance of a policy π in MDP M at timestep
h ∈ [H] when starting at state s ∈ S and taking action
a ∈ A by its associated action-value function Qπ

M,h(s, a) =

E
[

H∑
h′=h

R(sh′ , ah′)
∣∣ sh = s, ah = a

]
. Taking the value

function as V π
M,h(s) = Ea∼πh(·|s)

[
Qπ

M,h(s, a)
]
, we

define the optimal policy π⋆ as achieving supremal
value V ⋆

M,h(s) = sup
π∈Π

V π
M,h(s) for all s ∈ S, h ∈

[H] where Π denotes the class of all non-stationary,
stochastic policies. For any episode k ∈ [K], we let
τk = (s

(k)
1 , a

(k)
1 , r

(k)
1 , . . . , s

(k)
H , a

(k)
H , r

(k)
H , s

(k)
H+1) denote

the random trajectory experienced by the agent execut-
ing its policy in the environment. Meanwhile, Hk =
{τ1, τ2, . . . , τk−1} ∈ H is the entire random history of
agent interaction at the start of the kth episode.

Abstractly, a RL algorithm is a sequence {π(k)}k∈[K]

where the policy deployed at each episode π(k) is a
function of the current history Hk. We may evalu-
ate the performance of a RL algorithm on MDP M
via its cumulative regret: REGRET({π(k)}k∈[K],M) =

E
[

K∑
k=1

(
V ⋆
M,1(s1)− V π(k)

M,1 (s1)
)]

, which measures the to-

tal performance shortfall between an agent’s chosen policy
and the optimal policy across all episodes.

3. A LLM-Based Implementation of Posterior
Sampling for Reinforcement Learning

One of the major obstacles to data-efficient RL is explo-
ration, where a learner must determine what data to col-
lect from the environment to maximize long-term perfor-
mance. While much of the early work on addressing ex-
ploration in RL (please see Appendix A for an overview
of related work) adhered to “optimism in the face of uncer-
tainty,” an alternative is to proceed in a Bayesian fashion.
The Bayesian RL setting (Bellman & Kalaba, 1959; Duff,
2002; Ghavamzadeh et al., 2015) recognizes that the un-
derlying MDP is entirely unknown to the agent and, there-
fore, a random variable. The agent is thus endowed with a
prior distribution P(M ∈ ·) to reflect initial uncertainty
in the true MDP. We make a standard assumption that
this prior distribution is well-specified such that the true
MDP resides in its support. While the standard RL objec-
tive (Sutton & Barto, 1998) calls for an agent to minimize
regret, another performance criterion is the Bayesian regret,
which simply integrates out the randomness in M with re-
spect to an agent’s prior: BAYESREGRET({π(k)}k∈[K]) =

E
[
REGRET({π(k)}k∈[K],M)

]
.

Unfortunately, the canonical Bayes-Adaptive MDP
(BAMDP) (Bellman & Kalaba, 1959; Duff, 2002) that
encapsulates the full Bayesian RL problem is often
computationally-intractable even in the simplest classes
of environments, such as tabular MDPs. This is a direct
consequence of the intractably-large BAMDP hyperstate
space (Duff, 2002; Arumugam & Singh, 2022), in which
traditional MDP states are folded in alongside epistemic
states (Lu et al., 2023) that contain an agent’s beliefs and
epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009)
about the world. While states and actions of the MDP are
considered known, the transition and reward functions are
unknown to a RL agent (otherwise, the agent would face a
planning, rather than RL, problem). With each step taken in
the true environment, the resulting immediate reward and
next-state transition provide ground-truth observations with
which the agent may obtain posterior beliefs about the under-
lying MDP M; even for a simple finite MDP, one episode of
interaction results in a hyperstate space that is exponentially-
large in the problem horizon H . While the true MDP state
at each timestep is essential to good decision-making, one
might hope that the latter epistemic state could be lazily
updated while still allowing an agent to strategically explore
the world by reducing epistemic uncertainty. This insight is
the basis of posterior-sampling methods in RL.

3.1. The Classic Approach

The promise of Bayesian RL methods is to facilitate
statistically-efficient exploration by reducing an agent’s
epistemic uncertainty about the world. One strategy for

2

Toward Efficient Exploration by Large Language Model Agents

Figure 1. The PSRL algorithm with LLM subroutines of posterior
sampling, optimal behavior with respect to a sample, and posterior
updating shown. Dotted arrows show data flow.

reaping the benefits of uncertainty-based exploration in a
computationally-tractable manner is through Posterior Sam-
pling for RL (PSRL) (Strens, 2000), presented as Algorithm
1. Rather than updating the epistemic state at each timestep,
PSRL holds it fixed during each episode and only updates
posterior beliefs at the end using the full trajectory τk. To
govern action selection within each episode based on current
knowledge of the true underlying MDP P(M ∈ · | Hk),
PSRL employs Thompson sampling (TS) (Thompson, 1933;
Russo & Van Roy, 2014; Russo et al., 2018), whereby the
agent draws one posterior sample as a statistically-plausible
hypothesis about the true MDP (Line 3) and proceeds to
act optimally with respect to it by executing the sampled
MDP optimal policy (Lines 4-5). It has been shown the-
oretically that, by iteratively employing TS in this man-
ner, PSRL is able to achieve strong exploration and satisfy
Bayesian regret upper bounds for statistically-efficient RL
in tabular MDPs and beyond (Osband et al., 2013; Osband
& Van Roy, 2014; Abbasi-Yadkori & Szepesvari, 2014; Os-
band & Van Roy, 2016; Agrawal & Jia, 2017; Ouyang et al.,
2017; Osband & Van Roy, 2017; Lu & Van Roy, 2019).

While PSRL enjoys nice theoretical guarantees, practical
implementations extending beyond tabular MDPs (Osband
et al., 2013) face significant computational hurdles. Rep-
resenting and maintaining epistemic uncertainty about the
underlying MDP transition and reward functions is an open
challenge in high-dimensional environments. While some
work has studied using neural networks to address the
broader problem of uncertainty estimation for guiding ex-
ploration in RL (Osband et al., 2016a; Lu & Van Roy, 2017;
Osband et al., 2018; O’Donoghue et al., 2018; Dwaracherla
et al., 2020; Osband et al., 2023; Sasso et al., 2023), the over-
whelming majority of these efforts have concentrated on a
model-free analogue of PSRL that maintains a Bayesian
posterior over the optimal action-value function Q⋆ (Os-
band et al., 2016b; 2019) in lieu of the underlying MDP M.
Meanwhile, the minority of such methods that actually strive

Figure 2. Examples of a posterior (top) and posterior sample (bot-
tom) generated by our LLM-based PSRL in Wordle

to implement PSRL have either been met with mixed results
across hard-exploration problems or have been limited to
evaluations in smaller-scale domains. Among them is a line
of work that leans heavily into the use of Langevin dynamics
for recovering the strategic exploration of PSRL (Mazumdar
et al., 2020; Karbasi et al., 2023; Ishfaq et al., 2024; Jorge
et al., 2024); in the context of this work, such technical ma-
chinery is incredibly challenging and nontrivial to combine
or emulate with LLM agents.

In parallel, beyond the difficulties of maintaining a PSRL
agent’s posterior distribution over the true MDP, computing
the optimal policy for the posterior sample drawn in each
episode constitutes an additional challenge that requires the
solution to a model-based planning problem. While there
has been progress and even notable successes in this space
for deep RL agents (Kaiser et al., 2020), it is unclear if
those methods are readily applicable to the natural language
tasks faced by LLM agents. In our experiments, we report
positive results for our LLM-based PSRL implementation in
MDPs with deterministic transition functions, but encounter
negative results in environments due to poor LLM planning
capability under stochastic dynamics.

3.2. A LLM Implementation

The key contribution of this paper is recognizing that LLMs
can be operationalized to provide basic, atomic functions
from which PSRL may be implemented. As discussed in
Section A, this stands in stark contrast to existing strides to-
wards efficient decision-making with LLM agents (Nie et al.,
2024; Krishnamurthy et al., 2024; Klissarov et al., 2024; Ke
et al., 2024) which either leave a LLM to its own devices
for strategizing exploration or expect in-context learning
(ICL) (Brown et al., 2020) to emulate the exploration of an
existing RL or bandit algorithm. While future LLMs may
become sufficiently capable to accommodate the former,
our experiments today suggest this is not the case for two
simple natural language tasks where efficient exploration
is paramount to success; by the same token, we anticipate
that our proposed LLM-based implementation of PSRL will

3

Toward Efficient Exploration by Large Language Model Agents

also benefit and gracefully extend to more complex natu-
ral language tasks as the constituent LLM models become
more capable at performing their requested functions. LLM
agents emulating classic RL methods are also bound to the
same traditional problem classes whereas LLM-based im-
plementations of RL algorithms may broaden the footprint
of classic algorithms to include natural language problem
domains that would otherwise be entirely infeasible.

As shown in Algorithm 1, our proposed implementation of
PSRL relies on LLMs to play three distinct roles: (1) an ap-
proximate posterior updater, (2) a posterior sampler, and (3)
an optimal policy with respect to a posterior sample. PSRL
requires a prior distribution over MDPs as input and, more
generally in any episode, needs a current posterior that accu-
rately reflects the agent’s current knowledge and uncertainty
about the world. For our purposes, such an approximate
“posterior”1 is a textual description that summarizes both
the known and uncertain aspects of the true MDP transition
and reward function. More importantly, it also explicitly
communicates (in some way) the amount of uncertainty an
agent has about these aspects of the world. As this textual
summary amounts to the PSRL agent’s epistemic state rep-
resentation (Lu et al., 2023), an agent designer may exert
strong influence over this representation through the pre-
sentation and expression of prior knowledge; as a concrete
example, specifying the next-state transition distribution
of a tabular MDP in our experiments as a Dirichlet distri-
bution (in language) naturally encourages the LLM-based
implementation of PSRL to maintain visitation counts. Of
course, an advantage is that agent designers may now lever-
age the full expressivity and fluidity of natural language for
communicating prior knowledge without being restricted to
the few statistical distributions allowing the computational
conveniences of conjugate priors.

Given a current posterior reflecting the agent’s knowledge
and uncertainty about the world, PSRL must be able to draw
one posterior sample from these beliefs. We implement
this as a first LLM that, given the agent’s current textual
posterior (initially set to be the agent designer’s input prior)
is tasked with generating a plausible hypothesis for how
transitions and rewards unfold. In some domains, such as
tabular MDPs, it may be natural for this to be an exhaustive
list of rewards and next-state transitions for each state-action
pair. For more practical scenarios of interest, it may be ben-
eficial to prompt this posterior sampling LLM so that it can
leverage an environment proxy or lossy surrogate MDP (Lu
et al., 2023; Arumugam & Van Roy, 2022) that retains only
the salient details needed to determine optimal behavior. As
a concrete example, one of our natural language tasks is

1For ease of exposition, we will refer to this object as a poste-
rior throughout the remainder of the paper, but acknowledge the
distinction between this object and the true, statistical object that
is the Bayesian posterior distribution.

the game of Wordle (shown in Figure 2) that, as a MDP,
has a transition function and reward function defined en-
tirely around an unknown, five-letter target word. Here the
target word serves as an environment proxy that our LLM-
based PSRL agent may directly monitor uncertainty over
without meticulously maintaining statistics for individual
state-action pairs.

With a single posterior sample in hand, a PSRL agent must
be able to select actions that would be considered optimal if
the sampled MDP truly reflected reality. We implement this
as a second LLM tasked with executing actions given the
current state that maximize value in a way that is consistent
with the natural language hypothesis generated by the pos-
terior sampling LLM. In the simplest case, the model need
only be given the posterior sample and input observation
and asked directly to generate an action. In more challeng-
ing settings, an agent designer may architect this optimal
policy LLM more carefully via chain-of-thought prompt-
ing (Wei et al., 2022; Kojima et al., 2022) to increase the
chance of selecting optimal actions consistent with provided
hypothesis.

Upon the completion of an episode with the optimal policy
LLM acting with respect to the hypothesis of the posterior
sampling LLM, we task a third and final LLM with updat-
ing the PSRL agent’s knowledge and residual uncertainty
about the world, akin to an (approximate) posterior update.
Given a complete trajectory consisting of reward signals
and next-state transitions for exactly H state-action pairs,
this posterior LLM must reconcile the agent’s prior knowl-
edge at the start of the episode against observed interactions
from within the environment. All three LLMs can then be
orchestrated to run the PSRL algorithm.

4. Experiments
The goal of our experiments is to assess how implement-
ing PSRL with LLMs both retains the desirable exploration
properties that PSRL exhibits empirically within simpler
problem domains as well as expands the range of problems
where these benefits can be realized. To this end, we focus
our evaluation on tasks which demand prudent exploration
to achieve success. For each task, we present cumulative re-
gret curves (lower, flatter plots indicate better performance)
where any shading denotes one standard error. All agents
use GPT-4o (Hurst et al., 2024) for their constituent LLMs.
We let κsampling, κπ⋆ , and κposterior denote the tempera-
tures of the posterior sampling, optimal policy, and posterior
update LLMs, respectively. We defer further details of our
experiments, including all prompts used in each task to the
Appendix.

4

Toward Efficient Exploration by Large Language Model Agents

Figure 3. Cumulative regret curves for a 5-armed Bernoulli bandit.

4.1. Multi-Armed Bandits

Following prior work studying the exploratory capabilities
of LLMs (Coda-Forno et al., 2023; Binz & Schulz, 2023;
Coda-Forno et al., 2024; Krishnamurthy et al., 2024; Nie
et al., 2024), we begin the empirical assessment of our
LLM-based PSRL with a multi-armed bandit problem (Lai
& Robbins, 1985; Bubeck & Cesa-Bianchi, 2012; Lattimore
& Szepesvári, 2020). Readers unfamiliar with multi-armed
bandits may simply observe them as a special case of a
MDP with a horizon H = 1, singleton state space |S| = 1,
and a stochastic (rather than deterministic) reward function.
Our evaluation follows that of Krishnamurthy et al. (2024)
who chose the simple yet challenging case of a five-armed
Bernoulli bandit with independent arms and an action gap
of 0.2.2 The version we evaluate has one randomly selected
optimal arm with rewards drawn from a Bernoulli(0.6) dis-
tribution while all other arms use a Bernoulli(0.4).

Observe that PSRL specialized to a multi-armed bandit prob-
lem mirrors classic TS where, at each timestep, the agent
samples one plausible hypothesis for the mean reward of
each arm and then proceeds to select the optimal action
believed to achieve highest mean reward under the given
hypothesis. We compare PSRL implemented with LLMs
to classic TS for a Bernoulli bandit with each arm initial-
ized with a Beta(1, 1) prior. Meanwhile, our LLM-based
PSRL agent begins with a prior for each arm specified as
a Beta(1,1) in natural language. While we fix temper-
atures κπ⋆ = κposterior = 1, we find that the posterior
sampling temperature has profound impact on the perfor-
mance of our LLM-based PSRL agent. Figure 3 compares
TS (run for 1,000 independent trials) against PSRL with

2The action gap is defined as the difference in expected reward
between the best and second best action. Larger action gaps make
it easier to identify the optimal arm with few samples whereas
smaller action gaps demand greater exploration.

Figure 4. Cumulative regret curves for the combination lock envi-
ronment. The vertical axis shows turns to identify the unlock code.

four distinct settings of κsampling (run for 20 independent
trials). We relegate further bandit results to the Appendix.

4.2. Natural Language Tasks

An LLM-based implementation of PSRL can help realize
the benefits of efficient exploration in domains currently un-
touchable by vanilla PSRL. We present two natural language
tasks where the initial prior uncertainty and time sensitivity
due to limited episodes present a formidable exploration
challenge.

The first task is a combination lock environment where an
agent must enter H = 3 distinct digits in order to open
a lock and receive a reward of +1. All other rewards are
zero and the agent is provided with state information indi-
cating whether the most recently guessed digit is either in
the correct position for the unlocking code, present in the
unlocking code but in some other position, or simply not
present in the unlocking code at all. An agent has a total
of K = 8 episodes to identify the correct combination and,
with each one of 20 independent trials having an unlock
code sampled uniformly at random from all 720 possible
codes, exploration via uniform random action selection has
just under a 0.14% chance of success.

The second task is the web game Wordle, where an agent
has exactly K = 6 episodes to enter H = 5 distinct letters3

that form a correct target word and receive a reward of
+1. Across 40 independent trials, the target word is chosen
uniformly at random from a corpus of English dictionary
words filtered for slang and repeated letters. The agent is
provided feedback in each state indicating whether the most
recently guessed letter is in the correct position for the target
word, in the target word but at some other position, or not

3We do not require the letters to form a dictionary word.

5

https://en.wikipedia.org/wiki/Wordle
https://gist.github.com/slushman/34e60d6bc479ac8fc698df8c226e4264

Toward Efficient Exploration by Large Language Model Agents

Figure 5. Cumulative regret curve for the Wordle environment.
The vertical axis shows turns to identify the target word.

present in the target word at all.

We compare our LLM-based implementation of PSRL
against three baseline methods. Our PSRL agent
(κsampling = κπ⋆ = κposterior = 1) is given an uninforma-
tive prior which describes all non-repeating codes/English
words with the appropriate length as being equiprobable;
the unlock code/target word is an environment proxy (Lu
et al., 2023) such that knowledge of the proxy is a suffi-
cient statistic for recovering the full MDP. In-Context Policy
Iteration (ICPI) (Brooks et al., 2023) takes classic policy
iteration (Howard, 1960) and offers an implementation via
three LLMs, using ICL to elicit a rollout policy; transition
function; and reward function respectively. Together, these
models allow for policy improvement via greedy action se-
lection π(k)(sh) = argmax

a∈A
Qπ(k−1)

M (sh, a), with ties bro-

ken randomly.4 In-Context RL (ICRL) (Monea et al., 2024)
aims to explore via the stochasticity in LLM responses from
sensitivity to the input ICL data. Which episodes are in-
cluded from a replay buffer for ICL with a LLM policy
at each timestep is determined by sampling independent
Bernoulli(p) random variables; we study three distinct val-
ues of the keep probability p ∈ {1, 0.5, 0.1}. Finally, we
evaluate Reflexion (Shinn et al., 2024), which passes each
full trajectory through a self-reflection LLM that generates
verbal guidance; the total history of verbal guidance is given
at each timestep to the LLM policy, along with the current
state, for improving the quality of decision-making. In the
combination lock environment, we also compute the Bayes-
optimal policy with respect to the uninformative prior and
plot its cumulative regret for comparison with PSRL.

4Due to its significantly higher financial cost and lengthy run
times, ICPI is limited to only 10 trials in Wordle.

5. Discussion
In this section, we provide a detailed overview of our results
as well as insight into the limitations of our proposed LLM-
based implementation of PSRL. Due to space constraints,
we present a survey of related work in Appendix A.

5.1. Retaining Efficient Exploration

In the bandit setting, we observe our LLM-based PSRL ob-
tains better cumulative regret curves than classic TS, for the
limited time horizon of T = 100. We find that supplying
PSRL with an initial prior of Beta(1,1) in language au-
tomatically encourages the posterior update LLM to update
binary reward observation counts for the chosen arm in each
time period. Moreover, we find that the optimal policy LLM
has little difficulty in examining the sequence of expected
reward values for each arm generated by the posterior sam-
pling LLM and adhering to select the perceived best action.
Manipulating κsampling shows that even values as large as 1
lead to greedy-like exploration in many trials where the re-
sulting posterior sample favors the action observed to yield
the most successes thus far. For a limited number of trials,
this error proves to be not so catastrophic for temperatures
of at least 1. We find that increasing κsampling > 1 yields
exploratory behavior more aligned with TS where optimal
actions more likely to be taken in the later time periods and a
slowing of probability mass pulled away from other actions.

The combination lock and Wordle environments represent
separate instances of the same exploration problem within a
deterministic environment. Our results show that the LLM-
based PSRL is able to most effectively explore the space of
possible unlock codes/target words relative to the baseline
methods. Crucially, none of the three constituent LLMs
used by PSRL are prompted to explicitly encourage ex-
ploration. Rather, these results illustrate how prompting
these LLMs to perform atomic functions of PSRL and al-
lowing the algorithm to prescribe how those outputs should
be orchestrated in the agent design can yield an effective
exploration strategy.

The ICPI paper includes a dataset balancing scheme for ICL,
presuming the requisite data has already been collected.
While reasonable for some environments, exploration is
fundamentally about governing data collection to synthesize
optimal behavior and, in these domains, ICPI never observes
non-zero reward and collapses to a random policy For ICRL,
using all available data with p = 1 is equivalent to the
“LLM policy” evaluated by Klissarov et al. (2024), who
also find poor performance in Wordle. While results in the
combination lock domain are better, we find that decreasing
the keep probability p is detrimental to the “exploratory”
ICRL of Monea et al. (2024). Reflexion is the strongest
baseline, however we observe that self-reflections during
the early stages of learning explicitly encourage exploration

6

Toward Efficient Exploration by Large Language Model Agents

Figure 6. Cumulative regret curve for the RiverSwim environment
with 3 states. Algorithms with knowledge of all deterministic
transitions supplied a priori are labeled.

of untested digits/letters literally, assuming the agent knows
how to explore upon simply being instructed to do so. Only
once uncertainty has largely been resolved do reflections
become more specific suggestions about how to explore
with particular digits/letters and their ordering.

5.2. Limitations

5.2.1. STOCHASTIC TRANSITION DYNAMICS

While the domains presented in the previous section confirm
that a LLM-based implementation of PSRL retains efficient
exploration in deterministic environments, we find that it
falls short in stochastic environments. As a simple illustra-
tion of this, we turn our focus to a truncated variant of the
RiverSwim environment (Strehl & Littman, 2008). River-
Swim is a tabular MDP given as a six-state chain where
the agent begins in the leftmost state. The stochastic tran-
sition function mimics a water current that allows an agent
to deterministically swim to the left (downstream with the
current) but only stochastically swim to the right (upstream
against the current) with roughly a 40% chance of success.5

Swimming downstream in the initial state results in a small
reward of 0.005. Successfully swimming all the way up-
stream allows the agent to reach the rightmost state where it
can collect a reward of 1. As all other rewards are zero, a
RiverSwim agent must explore the full length of the river
to learn optimal behavior. To keep financial and temporal
costs down, we truncate the environment to a river of length
3 (one initial state, intermediate state, and terminal state).

We compare our LLM-based implementation of PSRL with
a vanilla PSRL agent for a tabular MDP (Osband et al.,

5We adhere to the specific transition dynamics presented by
Osband et al. (2013).

2013). The latter models epistemic uncertainty over the
transition function as a collection of |S||A| Dirichlet dis-
tributions. This epistemic state representation allows for
the computational conveniences of Dirichlet-multinomial
conjugacy. We further model unknown rewards with a
discrete uniform prior over {0, 0.005, 1}. Cumulative re-
gret curves shown in Figure 6 compare our LLM-based
PSRL with a Dirichlet(0.1,0.1,0.1) prior against
vanilla PSRL run with two different choices of (uniform)
Dirichlet prior initialization (α0 = 1

|S| and α0 = 1). Addi-
tional comparisons are made against our best-performing
baselines in the combination lock environment: Reflexion
and ICRL with p = 1. We also report both vanilla and
LLM-based PSRL run with prior distributions where all
deterministic RiverSwim transitions (only those where the
agent swims downstream) are given as prior knowledge. We
use κπ⋆ = κposterior = 0 and κsampling = 0.5. All agents
are run for 40 independent trials.

Despite achieving the best regret curve out of all presented
LLM agents in RiverSwim, both of our LLM-based PSRL
variants incur near-linear regret while most instances of clas-
sic PSRL are able to achieve optimal behavior. Reflexion is
unable to persevere past failed attempts to swim upstream
before settling for the smaller downstream reward of 0.005.
ICRL has just over 25% of trials where it stumbles into the
optimal policy and sticks with it while, for 60% of trials, it
too falls back to pursuing the downstream reward. For PSRL,
this result underscores a crucial distinction in the choice of
epistemic state between agents; that is, the statistical object
Dirichlet(0.1, 0.1, 0.1) used by classic PSRL and the nat-
ural language string Dirichlet(0.1,0.1,0.1) used
in LLM-based PSRL. For deterministic transitions in River-
Swim, classic PSRL is able to see eventual concentration to
a Dirac delta distribution. Meanwhile the LLM-based PSRL
agent, while successful at maintaining visitation counts,
struggles to achieve the same convergence and leaves non-
negligible probability mass in each posterior sample on non-
existent transitions with fictitious rewards. One plausible
explanation would be that such concentration errors stem
from a lack of familiarity by the LLMs, given that Dirich-
let distributions with fractional parameters are encountered
with less frequency (McCoy et al., 2024); however, our pre-
liminary experiments with a Dirichlet(1,1,1) prior
showed no significant improvement.

We posited that supplying all deterministic transitions as
prior knowledge would fare better against classic PSRL.
While this does allow LLM-based PSRL to exhibit optimal
behavior in many trials, far too many still fail as the optimal
policy LLM struggles to select optimal actions, even when
supplied with posterior samples that have high fidelity to the
true environment. Reasons for this include misread transi-
tion probabilities (such as swapping numerical values of the
input posterior sample) as well as a lack of understanding for

7

Toward Efficient Exploration by Large Language Model Agents

Figure 7. Cumulative regret curves for the combination lock envi-
ronment including LLM-IDS.

long-term, value-based planning. Additionally, we observe
a rare occurrence where posterior updates can be prone to
catastrophically forgetting a single transition and halting
learning progress. Altogether, while the overall result is
negative, we anticipate that the issues we have encountered
(posterior concentration, holistic long-term planning, and
forgetting) may be alleviated organically with possibly no
intervention beyond swapping the GPT-4o model used in
our experiments with a more advanced alternative (Jaech
et al., 2024; Guo et al., 2025). If not, one might still nat-
urally anticipate that such deficiencies will disappear with
time assuming future LLM capabilities continue to grow.

5.2.2. BEYOND THOMPSON SAMPLING

While PSRL, through the use of TS, is known to yield a
strong exploration strategy, it is by no means perfect. In the
bandit literature, shortcomings of TS are well-known and
naturally become more salient in the full RL problem (Russo
& Van Roy, 2018; Lu et al., 2023). In short, by only exe-
cuting actions with some probability of being optimal, TS
will never take deliberately sub-optimal actions that yield
tremendous information gain. Figure 2 already illustrates
how a PSRL agent’s uncompromising execution of only
potentially-optimal policies cripples exploration and only
allows for the testing of two unknown letters at a time.

One remedy is to seek out instantiations of information-
directed sampling (IDS) (Russo & Van Roy, 2018). IDS is
an algorithmic design principle that advocates for using a
policy which balances between performance shortfall and
information gain. While supported by a rigorous corroborat-
ing theory in both bandits and RL (Lu et al., 2023), concrete
and practical instantiations of IDS are difficult to come by
on account of the challenges surrounding information gain
estimation (McAllester & Stratos, 2020). Moreover, the

temporally-delayed consequences absent from bandits but
present in RL problems poses an additional challenge as
a proper IDS agent must forecast future opportunities for
knowledge acquisition several steps into the future when
evaluating current actions.

We present an initial design for a IDS agent with LLMs. Our
proposed LLM-IDS agent is myopic in that it only takes im-
mediate information gain about optimal behavior at the next
timestep into account. Nevertheless, the feedback structure
of the combination lock environment allows such an agent
to be unconcerned with temporally-delayed information.
For a current state st ∈ S, we define two |A|-dimensional
vectors, ρ and I, where ρ(a) = E [V ⋆(st)−Q⋆(st, a)] is
the expected regret of taking action a ∈ A in st under
the agent’s current posterior and I(a) = I(π⋆;Rt, St+1 |
At = a, St = st) is the information gained (formally, the
conditional mutual information (Cover & Thomas, 2012))
about the optimal policy by taking action a from state st.
IDS calls for sampling an action from the distribution that
minimizes the information ratio: min

π∈∆(A)

Ea∼π [ρ(a)]
2

Ea∼π [I(a)] . Nor-

mally, computation of the ρ and I vectors would be done
directly with the current posterior. Instead, we recycle the
same posterior update LLM from our LLM-based PSRL
but incorporate two new LLMs for the provision of ρ and
I; each of these LLMs is prompted on a per-action basis
to assess the expected regret or information gain, respec-
tively, from each action in the current state. With these 2|A|
LLM-generated numerical values, the convex optimization
problem of minimizing the information ratio is solved to
compute the policy for action selection. Figure 7 shows
that LLM-IDS is able to outperform LLM-based PSRL by
more quickly testing for unknown digits while remaining
unencumbered by known digits already discovered.

6. Conclusion
While much of the burgeoning literature surrounding LLM
agents has felt compelled to design new algorithms for solv-
ing RL problems, we here have demonstrated that an exist-
ing algorithm, PSRL, can be implemented with LLMs in
environments with deterministic transition dynamics. The
main advantage of our proposed LLM-based implementa-
tion of PSRL is allowing agent designers to leverage the
strong generalization and reasoning capabilities of LLMs in
natural-language environments while simultaneously cap-
italizing on the well-studied exploration properties of TS.
Further study on how LLMs may perform the requisite
planning needed to extend our results to stochastic envi-
ronments is a natural area for future work. More broadly,
our preliminary results with recovering information-directed
exploration with LLMs represents a fruitful direction and
further reinforces the potential benefits of implementing,
rather than replacing, existing RL algorithms with LLMs.

8

Toward Efficient Exploration by Large Language Model Agents

Impact Statement
The impact of LLMs in recent years has been undeniable
and so immense as to extend beyond the confines of the
machine learning community, drawing scrutiny from the
broader public. As this paper studies mechanisms for im-
proving the decision-making capabilities of LLMs that are
becoming increasingly more capable and ubiquitously de-
ployed, there is potential for broad impact stemming from
our work. This impact is amplified by the fact that our con-
tributions for improved exploration in LLMs center around
Thompson sampling (Thompson, 1933), an exploration strat-
egy whose impact in real-world decision-making problems
such as recommendation systems (Chapelle & Li, 2011) and
beyond (Russo et al., 2018) is already well known.

References
Abbasi-Yadkori, Y. and Szepesvari, C. Bayesian Opti-

mal Control of Smoothly Parameterized Systems: The
Lazy Posterior Sampling Algorithm. arXiv preprint
arXiv:1406.3926, 2014.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. GPT-4 Technical Report. arXiv
preprint arXiv:2303.08774, 2023.

Agrawal, S. and Jia, R. Optimistic Posterior Sampling for
Reinforcement Learning: Worst-Case Regret Bounds. In
Advances in Neural Information Processing Systems, pp.
1184–1194, 2017.

Arumugam, D. and Singh, S. Planning to the Information
Horizon of BAMDPs via Epistemic State Abstraction.
In Advances in Neural Information Processing Systems,
volume 35, 2022.

Arumugam, D. and Van Roy, B. Deciding What to Model:
Value-Equivalent Sampling for Reinforcement Learning.
Advances in Neural Information Processing Systems, 35:
9024–9044, 2022.

Auer, P., Fischer, P., and Cesa-Bianchi, N. Finite-Time
Analysis of the Multiarmed Bandit Problem. Machine
Learning, 47(3):235–256, 2002.

Auer, P., Jaksch, T., and Ortner, R. Near-Optimal Regret
Bounds for Reinforcement Learning. In Advances in
Neural Information Processing Systems, pp. 89–96, 2009.

Azar, M. G., Osband, I., and Munos, R. Minimax Regret
Bounds for Reinforcement Learning. In International
Conference on Machine Learning, pp. 263–272, 2017.

Bellman, R. A Markovian Decision Process. Journal of
Mathematics and Mechanics, pp. 679–684, 1957.

Bellman, R. and Kalaba, R. On Adaptive Control Processes.
IRE Transactions on Automatic Control, 4(2):1–9, 1959.

Binz, M. and Schulz, E. Using Cognitive Psychology to
Understand GPT-3. Proceedings of the National Academy
of Sciences, 120(6):e2218523120, 2023.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the Opportunities and Risks
of Foundation Models. arXiv preprint arXiv:2108.07258,
2021.

Brafman, R. I. and Tennenholtz, M. R-MAX - A General
Polynomial Time Algorithm for Near-Optimal Reinforce-
ment Learning. Journal of Machine Learning Research,
3(Oct):213–231, 2002.

Brooks, E., Walls, L., Lewis, R. L., and Singh, S. Large
Language Models Can Implement Policy Iteration. Ad-
vances in Neural Information Processing Systems, 36:
30349–30366, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language Models are Few-Shot Learners.
Advances in Neural Information Processing Systems, 33:
1877–1901, 2020.

Bubeck, S. and Cesa-Bianchi, N. Regret Analysis of
Stochastic and Nonstochastic Multi-Armed Bandit Prob-
lems. Foundations and Trends in Machine Learning, 5
(1):1–122, 2012.

Chapelle, O. and Li, L. An Empirical Evaluation of Thomp-
son Sampling. In Advances in Neural Information Pro-
cessing Systems, pp. 2249–2257, 2011.

Coda-Forno, J., Binz, M., Akata, Z., Botvinick, M., Wang,
J., and Schulz, E. Meta-In-Context Learning in Large
Language Models. Advances in Neural Information Pro-
cessing Systems, 36:65189–65201, 2023.

Coda-Forno, J., Binz, M., Wang, J. X., and Schulz, E. Cog-
Bench: A Large Language Model Walks into a Psychol-
ogy Lab. In Forty-first International Conference on Ma-
chine Learning, 2024.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory. John Wiley & Sons, 2012.

Dai, Z., Tomasi, F., and Ghiassian, S. In-Context
Exploration-Exploitation for Reinforcement Learning. In
The Twelfth International Conference on Learning Repre-
sentations, 2024.

Dann, C. and Brunskill, E. Sample Complexity of Episodic
Fixed-Horizon Reinforcement Learning. In Proceedings

9

Toward Efficient Exploration by Large Language Model Agents

of the 28th International Conference on Neural Informa-
tion Processing Systems-Volume 2, pp. 2818–2826, 2015.

Dann, C., Lattimore, T., and Brunskill, E. Unifying PAC and
Regret: Uniform PAC Bounds for Episodic Reinforce-
ment Learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
pp. 5717–5727, 2017.

Der Kiureghian, A. and Ditlevsen, O. Aleatory or Epis-
temic? Does it Matter? Structural Safety, 31(2):105–112,
2009.

Dong, S., Van Roy, B., and Zhou, Z. Simple Agent, Complex
Environment: Efficient Reinforcement Learning with
Agent States. Journal of Machine Learning Research,
23(255):1–54, 2022.

Dudı́k, M., Hofmann, K., Schapire, R. E., Slivkins, A., and
Zoghi, M. Contextual Dueling Bandits. In Conference
on Learning Theory, pp. 563–587, 2015.

Duff, M. O. Optimal Learning: Computational Procedures
for Bayes-Adaptive Markov Decision Processes. PhD
thesis, University of Massachusetts Amherst, 2002.

Dwaracherla, V., Lu, X., Ibrahimi, M., Osband, I., Wen,
Z., and Van Roy, B. Hypermodels for Exploration. In
International Conference on Learning Representations,
2020.

Dwaracherla, V., Asghari, S. M., Hao, B., and Van Roy, B.
Efficient Exploration for LLMs. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

Ghavamzadeh, M., Mannor, S., Pineau, J., and Tamar, A.
Bayesian Reinforcement Learning: A Survey. Founda-
tions and Trends in Machine Learning, 8(5-6):359–483,
2015.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. DeepSeek-R1:
Incentivizing Reasoning Capability in LLMs via Rein-
forcement Learning. arXiv preprint arXiv:2501.12948,
2025.

Howard, R. A. Dynamic Programming and Markov Pro-
cesses. MIT Press, 1960.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. GPT-4o System Card. arXiv preprint
arXiv:2410.21276, 2024.

Ishfaq, H., Lan, Q., Xu, P., Mahmood, A. R., Precup, D.,
Anandkumar, A., and Azizzadenesheli, K. Provable and
Practical: Efficient Exploration in Reinforcement Learn-
ing via Langevin Monte Carlo. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. OpenAI o1 System Card. arXiv preprint
arXiv:2412.16720, 2024.

Jaksch, T., Ortner, R., and Auer, P. Near-Optimal Regret
Bounds for Reinforcement Learning. Journal of Machine
Learning Research, 11(4), 2010.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
Q-Learning Provably Efficient? Advances in Neural
Information Processing Systems, 31, 2018.

Jorge, E., Dimitrakakis, C., and Basu, D. Isoperimetry
is All We Need: Langevin Posterior Sampling for RL
with Sublinear Regret. arXiv preprint arXiv:2412.20824,
2024.

Kaiser, Ł., Babaeizadeh, M., Miłos, P., Osiński, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model Based Reinforcement
Learning for Atari. In International Conference on Learn-
ing Representations, 2020.

Kakade, S. M. On the Sample Complexity of Reinforcement
Learning. PhD thesis, University of London, University
College London (United Kingdom), 2003.

Karbasi, A., Kuang, N. L., Ma, Y., and Mitra, S. Langevin
Thompson Sampling with Logarithmic Communication:
Bandits and Reinforcement Learning. In International
Conference on Machine Learning, pp. 15828–15860,
2023.

Ke, N. R., Sawyer, D. P., Soyer, H., Engelcke, M., Reichert,
D. P., Hudson, D. A., Reid, J., Lerchner, A., Rezende,
D. J., Lillicrap, T. P., Mozer, M., and Wang, J. X. Can
Foundation Models actively Gather Information in Inter-
active Environments to Test Hypotheses? arXiv preprint
arXiv:2412.06438, 2024.

Kearns, M. and Singh, S. Near-Optimal Reinforcement
Learning in Polynomial Time. Machine Learning, 49:
209–232, 2002.

Klissarov, M., Hjelm, D., Toshev, A., and Mazoure, B.
On the Modeling Capabilities of Large Language Mod-
els for Sequential Decision Making. arXiv preprint
arXiv:2410.05656, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large Language Models are Zero-Shot Reasoners.
Advances in Neural Information Processing Systems, 35:
22199–22213, 2022.

Krishnamurthy, A., Harris, K., Foster, D. J., Zhang, C., and
Slivkins, A. Can Large Language Models Explore In-
Context? In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

10

Toward Efficient Exploration by Large Language Model Agents

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. Reward
design with language models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Lai, T. L. and Robbins, H. Asymptotically Efficient Adap-
tive Allocation Rules. Advances in Applied Mathematics,
6(1):4–22, 1985.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer,
S., Steigerwald, R., Strouse, D., Hansen, S., Filos,
A., Brooks, E., et al. In-Context Reinforcement
Learning with Algorithm Distillation. arXiv preprint
arXiv:2210.14215, 2022.

Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cam-
bridge University Press, 2020.

Lee, J., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised Pretraining
can Learn In-Context Reinforcement Learning. Advances
in Neural Information Processing Systems, 36, 2024.

Lu, X. and Van Roy, B. Ensemble Sampling. Advances in
Neural Information Processing Systems, 30, 2017.

Lu, X. and Van Roy, B. Information-Theoretic Confidence
Bounds for Reinforcement Learning. Advances in Neural
Information Processing Systems, 32, 2019.

Lu, X., Van Roy, B., Dwaracherla, V., Ibrahimi, M., Osband,
I., and Wen, Z. Reinforcement Learning, Bit by Bit.
Foundations and Trends in Machine Learning, 16(6):733–
865, 2023.

Mazumdar, E., Pacchiano, A., Ma, Y., Jordan, M., and
Bartlett, P. On Approximate Thompson Sampling with
Langevin Algorithms. In International Conference on
Machine Learning, pp. 6797–6807, 2020.

McAllester, D. and Stratos, K. Formal Limitations on the
Measurement of Mutual Information. In International
Conference on Artificial Intelligence and Statistics, pp.
875–884, 2020.

McCoy, R. T., Yao, S., Friedman, D., Hardy, M. D., and Grif-
fiths, T. L. Embers of Autoregression Show how Large
Language Models are Shaped by the Problem They are
Trained to Solve. Proceedings of the National Academy
of Sciences, 121(41):e2322420121, 2024.

Monea, G., Bosselut, A., Brantley, K., and Artzi, Y. LLMs
Are In-Context Reinforcement Learners. arXiv preprint
arXiv:2410.05362, 2024.

Nie, A., Su, Y., Chang, B., Lee, J. N., Chi, E. H., Le, Q. V.,
and Chen, M. EVOLvE: Evaluating and Optimizing
LLMs For Exploration. arXiv preprint arXiv:2410.06238,
2024.

O’Donoghue, B., Osband, I., Munos, R., and Mnih, V. The
Uncertainty Bellman Equation and Exploration. In In-
ternational Conference on Machine Learning, pp. 3836–
3845, 2018.

Osband, I. Risk Versus Uncertainty in Deep Learning:
Bayes, Bootstrap and the dangers of Dropout. In NIPS
Workshop on Bayesian Deep Learning, 2016.

Osband, I. and Van Roy, B. Model-Based Reinforcement
Learning and the Eluder Dimension. Advances in Neural
Information Processing Systems, 27, 2014.

Osband, I. and Van Roy, B. Posterior Sampling for Rein-
forcement Learning Without Episodes. arXiv preprint
arXiv:1608.02731, 2016.

Osband, I. and Van Roy, B. Why is Posterior Sampling
Better than Optimism for Reinforcement Learning? In
International Conference on Machine Learning, pp. 2701–
2710, 2017.

Osband, I., Russo, D., and Van Roy, B. (More) Efficient
Reinforcement Learning via Posterior Sampling. Ad-
vances in Neural Information Processing Systems, 26:
3003–3011, 2013.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
Exploration via Bootstrapped DQN. Advances in Neural
Information Processing Systems, 29, 2016a.

Osband, I., Van Roy, B., and Wen, Z. Generalization and
Exploration via Randomized Value Functions. In Interna-
tional Conference on Machine Learning, pp. 2377–2386,
2016b.

Osband, I., Aslanides, J., and Cassirer, A. Randomized Prior
Functions for Deep Reinforcement Learning. Advances
in Neural Information Processing Systems, 31, 2018.

Osband, I., Van Roy, B., Russo, D. J., and Wen, Z. Deep
Exploration via Randomized Value Functions. Journal of
Machine Learning Research, 20(124):1–62, 2019.

Osband, I., Wen, Z., Asghari, S. M., Dwaracherla, V.,
Ibrahimi, M., Lu, X., and Van Roy, B. Approximate
Thompson Sampling via Epistemic Neural Networks.
In Uncertainty in Artificial Intelligence, pp. 1586–1595,
2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training Language Models to Fol-
low Instructions with Human Feedback. arXiv preprint
arXiv:2203.02155, 2022.

Ouyang, Y., Gagrani, M., Nayyar, A., and Jain, R. Learn-
ing Unknown Markov Decision Processes: A Thompson

11

Toward Efficient Exploration by Large Language Model Agents

Sampling Approach. Advances in Neural Information
Processing Systems, 30, 2017.

Puterman, M. L. Markov Decision Processes—Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
New York, 1994.

Russo, D. and Van Roy, B. Learning to Optimize via Poste-
rior Sampling. Mathematics of Operations Research, 39
(4):1221–1243, 2014.

Russo, D. and Van Roy, B. Learning to Optimize via
Information-Directed Sampling. Operations Research,
66(1):230–252, 2018.

Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., and
Wen, Z. A Tutorial on Thompson Sampling. Foundations
and Trends in Machine Learning, 11(1):1–96, 2018.

Sasso, R., Conserva, M., and Rauber, P. Posterior Sampling
for Deep Reinforcement Learning. In International Con-
ference on Machine Learning, pp. 30042–30061, 2023.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language Agents with Verbal Rein-
forcement Learning. Advances in Neural Information
Processing Systems, 36, 2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to Summarize with Human Feedback. Ad-
vances in Neural Information Processing Systems, 33:
3008–3021, 2020.

Strehl, A. L. and Littman, M. L. An Analysis of Model-
Based Interval Estimation for Markov Decision Processes.
Journal of Computer and System Sciences, 74(8):1309–
1331, 2008.

Strehl, A. L., Li, L., and Littman, M. L. Reinforcement
Learning in Finite MDPs: PAC Analysis. Journal of
Machine Learning Research, 10(11), 2009.

Strens, M. J. A Bayesian Framework for Reinforcement
Learning. In Proceedings of the Seventeenth International
Conference on Machine Learning, pp. 943–950, 2000.

Sutton, R. S. and Barto, A. G. Introduction to Reinforcement
Learning. MIT Press, 1998.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J.,
Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Mil-
lican, K., et al. Gemini: A Family of Highly Capable
Multimodal Models. arXiv preprint arXiv:2312.11805,
2023.

Thompson, W. R. On the Likelihood That One Unknown
Probability Exceeds Another in View of the Evidence of
Two Samples. Biometrika, 25(3/4):285–294, 1933.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. ReAct: Synergizing Reasoning and
Acting in Language Models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. The
k-Armed Dueling Bandits Problem. Journal of Computer
and System Sciences, 78(5):1538–1556, 2012.

Zheng, Q., Henaff, M., Zhang, A., Grover, A., and Amos,
B. Online Intrinsic Rewards for Decision Making Agents
from Large Language Model Feedback. arXiv preprint
arXiv:2410.23022, 2024.

12

Toward Efficient Exploration by Large Language Model Agents

A. Related Work
While our primary focus in this paper is on efficient exploration for LLM agents, the broader challenge of efficient exploration
for RL agents is a long-studied topic. One route to achieving statistically-efficient RL relies on the use of “optimism in the
face of uncertainty,“ where approaches would either implicitly or explicitly maintain over-inflated value function estimates
for all state-action pairs (Kearns & Singh, 2002; Brafman & Tennenholtz, 2002; Kakade, 2003; Auer et al., 2009; Strehl et al.,
2009; Jaksch et al., 2010; Dann & Brunskill, 2015; Azar et al., 2017; Dann et al., 2017; Jin et al., 2018; Dong et al., 2022).
These optimistic biases would be calibrated by an agent designer to incentivize agent visitation of each state-action pair
sufficiently many times and eventually result in accurate value estimates that give rise to optimal behavior. Nie et al. (2024)
attempt to realize such an optimistic exploration strategy with LLMs (specifically, combining UCB (Auer et al., 2002) with
Gemini) for multi-armed bandit problems and demonstrate the difficulty in coupling statistical machinery like confidence
intervals with LLMs outright. While our proposed implementation relies on an equally (if not more) complex statistical
object, the Bayesian posterior, our experiments suggest that LLMs in certain cases may maintain an approximation sufficient
for guiding exploration. We defer a brief review of prior work on the alternative class of uncertainty-based exploration
methods to Section 3.

Existing designs for LLM agents either do not explicitly engage with the challenge of exploration or do so with complete
reliance on in-context learning (ICL) (Brown et al., 2020). One of the most popular LLM agent designs is Reflexion (Shinn
et al., 2024) where the policy LLM charged with selecting actions is informed at each episode by a “self-reflection” generated
from another LLM given the previous episode trajectory. While suitable for some tasks, we observe in our experiments
that the self-reflection LLM often “passes the buck” and encourages exploration explicitly in language without providing
a clear strategy for the downstream policy LLM to do so. By relying on LLMs to provide the requisite functions for the
right choice of existing RL algorithm, we encounter strategic exploration without needing to specifically instruct any of the
involved LLMs to explore. LLM agents that rely on ICL to enable exploration follow suit with a line of work that examines
Transformer-based RL agents in non-natural-language tasks (Laskin et al., 2022; Lee et al., 2024; Dai et al., 2024). Very
close to the spirit of our work is the in-context policy iteration (ICPI) method of Brooks et al. (2023), who take the classic
RL algorithm of policy iteration (PI) (Howard, 1960) and implement it with LLMs and ICL. Unfortunately, the original
PI algorithm is oriented towards tabular MDPs that allow for iterating over all state-action pairs simultaneously. In larger
environments where data must be judiciously acquired, we find that ICPI is never able to collect the data needed for ICL to
exhibit anything more that uniform-random action selection. Monea et al. (2024) study a selective “dropout” strategy for the
ICL demonstrations used by a policy LLM. Unfortunately, such a strategy mirrors ϵ-greedy exploration without making
a concerted effort to strategically guide decision-making, much like how classic dropout in deep RL is a poor proxy for
uncertainty-based exploration (Osband, 2016).

A related line of approaches examine using classic (deep) RL methods in tandem with LLM reward functions (Klissarov
et al., 2024; Kwon et al., 2023; Zheng et al., 2024). These approaches, while interesting, largely focus on non-linguistic
domains while our goal is to bring ideas on data-efficient RL to bear on the natural language domains where LLMs stand to
have the most impact. The posterior-sampling-based exploration strategy we consider in this work connects more broadly to
initial investigations surrounding the information gathering capabilities of LLMs (Ke et al., 2024). Lastly, we note that the
RLHF pipeline (Stiennon et al., 2020; Ouyang et al., 2022) used to explicitly train LLMs also faces an underlying sequential
decision-making problem (in the original formulation, a contextual dueling bandit (Yue et al., 2012; Dudı́k et al., 2015)) and,
as such, may greatly benefit from mechanisms to facilitate efficient exploration (Dwaracherla et al., 2024). While such work
is nascent, our results offer a promising new pathway for LLMs to achieve the strategic exploration that could reduce the
significant data burdens of RLHF.

B. Experiment Prompts
In this section, we outline all LLM prompts used in our experiments. We will present all system prompts in orange and all
user prompts in red.

In our experiments, depending on the particular environment, we consider two different forms of posterior LLM prompting.
For sufficiently short horizons, the posterior LLM is given the entire trajectory in a single prompt and is expected to produce
the updated posterior. For longer horizons or whenever concerns about context buffer length come into play, the posterior
LLM is prompted with one full (s, a, r, s′) experience tuple at a time and each successive posterior becomes the prior for
the subsequent update. Empirically, we find that whole trajectory updates may be more likely to result in erroneous updates
where certain pieces of information may be mistakenly updated or forgotten entirely. While this becomes far less likely with

13

Toward Efficient Exploration by Large Language Model Agents

per-step experience updates, the associated financial costs and time spent running the PSRL agent scale unfavorably with the
horizon of the problem. We use whole trajectory observations for all LLM-based PSRL posterior updates in the RiverSwim,
Combination Lock, and Wordle environments. For LLM-based PSRL multi-armed bandit results and LLM-IDS, we use
per-step posterior updates.

For whole trajectory posterior updates, the approximate posterior LLM uses the following system prompt and user prompt:

You are a Bayesian posterior distribution for a real-world sequential decision-making problem. Given a current prior
belief about the environment and single trajectory observation, you should produce the posterior distribution that
accurately reflects knowledge about possibly stochastic environment transitions and environment rewards based
on the observed trajectory. A trajectory observation is a sequence of experiences, where each experience consists
of a state, action, reward, and next state. Each unit of experience will be separated by XML <EXPERIENCE>
</EXPERIENCE> tags. The posterior distribution must always be complete and describe all sources of uncertainty
the agent has about the world. There can be uncertainty about a stochastic transition or reward. The posterior
distribution should take into account all information provided in the observed trajectory to update the prior belief
about the environment. Be direct and don’t show your work. You cannot make any assumptions about the agent and
the action selections used to generate the trajectory observation. Never try to model beliefs about the agent. Do not
say anything beyond providing the posterior distribution. The agent’s interactions with the environment will generate
rewards and the posterior distribution should keep track of how any and all rewards are generated. Information and
knowledge in the current prior belief about the environment should never be discarded from the posterior distribution.
If there is knowledge in the current prior belief about the environment that is unaffected by the trajectory observation,
then this knowledge should not be changed and must be repeated exactly in the posterior distribution. Do not say
anything to distinguish between old knowledge that is being retained and updated knowledge. The environment was
described to the agent like this: <Environment Description>

Your current prior is as follows: <Input prior/LLM-generated posterior>. A trajectory observation
is a sequence of experiences, where each experience consists of a state, action, reward, and next state. Each
unit of experience will be separated by XML <EXPERIENCE> </EXPERIENCE> tags. Here is an observed
trajectory:<Full trajectory>. Remember that knowledge in the current prior must only be updated but can
never be discarded, forgotten, or removed. Do not say anything about which information in the posterior is new and
updated or old and remains the same from the prior.

For per-step posterior updates, the approximate posterior LLM uses the following system prompt and user prompt:

You are a Bayesian posterior distribution generator for a real-world sequential decision-making problem. A sequential
decision-making problem is represented by an environment that, to each current state and action, produces a next
state transition and a reward based on that transition. Transitions and rewards observed from the environment may
be stochastic or may be deterministic. Given a current prior belief about the environment and single observation
consisting of a next state transition and reward from the environment, you should generate the posterior distribution
that accurately reflects knowledge about possibly stochastic environment transitions and environment rewards. The
posterior distribution should be a complete and accurate description of all uncertainty the agent has about the
world. Information from the prior belief can never be discarded, only updated to be more consistent with the given
observation. The posterior distribution should take into account all information provided in the observed next state
transition and reward to update the prior belief about the environment. You cannot make any assumptions about
the agent and the action selections used to generate the next state transition and reward observation. Never try to
model beliefs about the agent. The world may be stochastic and random such that the prior knowledge may need to
be updated in the posterior distribution to be consistent with an observed transition or reward. Any knowledge in
the prior belief about the environment that is not affected by the observed transition and reward should be retained
in full by your posterior distribution. The environment was described to the agent like this: <Environment
Description>

14

Toward Efficient Exploration by Large Language Model Agents

Your current prior is as follows:<Input prior/LLM-generated posterior>. Here is an observed envi-
ronment transition and reward:<Single next-state transition and reward>. Do not say anything
about which information in the posterior is new and updated or old and remains the same from the prior. Whenever
possible you must maintain exact, numerical probabilities.

The optimal policy LLM simply takes the current observation as the user prompt while using the following system prompt:

<Environment Description>. Always select optimal actions that maximize value across all future states
and all remaining timesteps according to the following hypothesis: <LLM-generated posterior sample>.
You must select actions that are optimal for and perfectly consistent with the above hypothesis. For each action,
you must consider its immediate expect reward as well as the expected value of future states that can be visited by
selecting the action. Always select from one of the available actions to take in the environment. Just say the action
after ”Action: ” and nothing else.

As generating a posterior sample requires specifying a full MDP, we find that the posterior sampling LLM in PSRL benefits
from having distinct prompts that cater to salient aspects of generating an instance of each environment. We organize the
associated environment descriptions as well as posterior sampling system prompts and user prompts by task in the following
sub-sections. We also include a sub-section for all prompts used by LLM-IDS.

B.1. Multi-Armed Bandits

The environment description for the multi-armed bandit task was given as:

You are an agent interacting with a 5-armed Bernoulli bandit problem. You have exactly 5 actions available labeled
as <List of randomly generated letters> and each action has an independent Bernoulli distribution.
When you select an action, you will receive a binary reward sampled from the associated Bernoulli distribution.

The posterior sampling LLM system prompts and user prompts were:

You are a generator of Bernoulli bandit problems. A Bernoulli bandit problem is a collection of mean reward values,
one for each available action. Knowledge about the reward of each available action will be given to you in the form
of a Beta distribution representing beliefs about the mean reward of each arm. This knowledge will constrain the
Bernoulli bandit problems you are allowed to generate. For each action, return one plausible hypothesis for the
mean reward an agent will observe when taking that action. Each mean reward you return should be consistent with
the knowledge you are given about the observed rewards of each action. Each action is independent and so each
hypothesis you return for the mean reward of each action will be independent of all others. You must return real,
numerical values starting with the phrase ”You think ” and do not say anything beyond providing the mean rewards
of each action. You cannot just return the mean value of the Beta distribution as your guess for the mean reward. You
must return a sample from each Beta distribution as your hypothesis. Before you return your mean reward values,
describe how each one obeys all constraints and knowledge provided to you. The environment was described to the
agent like this: <Environment Description>

Your current knowledge about the mean reward of each action is as follows:<Input prior/LLM-generated
posterior>. You must carefully read through this information to generate a Bernoulli bandit problem consistent
with this knowledge.

B.2. RiverSwim

The environment description for RiverSwim was given as:

15

Toward Efficient Exploration by Large Language Model Agents

You are an agent swimming in a network of three underwater caves connected by tunnels. Each cave is labeled
by its number and always has two tunnels labeled A and B that you can try to swim through. Swimming through
tunnels allows you to stochastically move between the caves. There is a strong current in the water which can affect
how difficult it is to successfully swim through certain tunnels. Some tunnels may be easier to swim through than
others. Successfully swimming through a tunnel once in any cave does not guarantee that it will always be successful.
Conversely, failing to swim through a tunnel once does not mean it is impossible and you may have to try again a few
times before successfully making it through and swimming into a different cave. Swimming through specific tunnels
from certain caves to reach other caves may yield scalar rewards between zero and one.

The posterior sampling LLM system prompts and user prompts were:

You are a map generator for an agent navigating an environment. The environment was described to the agent
as follows:<Environment Description>. A map must specify exactly two pieces of information for each
possible combination of current cave, tunnel, and next cave. The first piece of information is a transition probability
that represents the probability of being in a specific cave, swimming through a particular tunnel, and ending up in
a specific next cave. Knowledge about next cave transitions will be provided to you as a collection of Dirichlet
distributions. Sampling these distributions will allow you to generate next cave transition probabilities for each
cave and tunnel combination. The second piece of information is a deterministic reward that an agent will receive
when being in a specific cave, swimming through a particular tunnel, and ending up in a specific next cave. You will
be given knowledge about known rewards and rewards that are still unknown and uncertain. If a reward is known,
you must repeat its numerical value exactly in the map you generate. If a reward is unknown, knowledge about
what it could be will be given to you as a discrete uniform distribution over possible values. You will sample this
distribution for each cave, tunnel, and next cave combination and include the concrete, numerical reward value in
the map you generate. The input knowledge will constrain the maps you are allowed to generate and the map you
generate must be consistent with the input knowledge. Any input knowledge that is known with certainty must be
repeated exactly in the map you generate without modification. All transition probabilities and all rewards must be
concrete, numerical values. You must sample the distributions you are given and cannot just return the mean value of
any input distribution for transition probabilities or rewards. Generate the map using complete sentences starting
with the phrase ”You think ” and do not say anything else. Do not say anything about the input knowledge from the
agent including the Dirichlet and uniform distributions.

Current knowledge about the next cave transitions and rewards is as follows: <Input prior/LLM-generated
posterior>. You must carefully read through this knowledge. Never say anything about the agent or tell the
agent what to do.

B.3. Combination Lock

The environment description for CombinationLock was given as:

You are a helpful assistant trying to guess the correct code to a combination lock as quickly as possible. The
combination lock requires a three-digit code. You will incrementally construct your guess for the code that unlocks
the lock by selecting one digit between 0 and 9 at each timestep. The correct code that opens the lock contains no
repeated numbers. For each digit you guess, you will be given feedback indicating if the guessed digit is either in
the correct position for the unlocking code, in the wrong position for the unlocking code, or does not appear in
the combination lock code at all. You will receive a final reward of one if your guessed code correctly unlocks the
combination lock. Otherwise, rewards will always be zero. Your only available actions are the digits from 0 to 9.

The posterior sampling LLM system prompts and user prompts were:

16

Toward Efficient Exploration by Large Language Model Agents

You are a helpful assistant trying to aid an agent in guessing an unknown code that will unlock a lock. Given all
knowledge the agent currently has about the correct code, you must generate a single guess at what the correct
code could be. You must read through the input information provided by the agent very carefully to produce a
good, accurate guess for the correct code. The agent’s current knowledge about the correct code establishes specific
constraints on what your guess can be. You must generate a guess for the correct code that is consistent with these
constraints. Before you return your guess, provide a short justification for each individual digit of your guess that
describes how the digit is consistent with the input knowledge from the agent. When you return your guess, start with
the phrase ”You think ” and do not say anything beyond providing your guess for the correct code. The environment
was described to the agent like this: <Environment Description>

The agent’s current knowledge about the correct code is the following:<Input prior/LLM-generated
posterior>. You must carefully read through all information the agent has provided. Never say anything
about the agent or tell the agent what decisions to make.

B.4. Wordle

The environment description for Wordle was given as:

You are an agent playing a customized version of the game Wordle. There is a five-letter target word from the
English dictionary which you must try to guess as quickly as possible. The target word does not contain any repeated
letters. You will incrementally construct your guess for this target word by selecting one letter of the alphabet at each
timestep. For each letter you guess, you will be given feedback indicating if the guessed letter is either in the correct
position for the target word, in the wrong position for the target word, or does not appear in the target word at all.
You will receive a reward of one if your guessed word correctly matches the target word. Otherwise, rewards will
always be zero. Your only available actions are letters of the alphabet.

The posterior sampling LLM system prompts and user prompts were:

You are a helpful assistant trying to aid an agent in guessing an unknown target word without any repeated letters
from the English dictionary. Given all knowledge the agent currently has about the target word, you must generate a
single guess at what the target word could be. You must read through the input information provided by the agent
very carefully to produce a realistic, plausible guess for the target word. The agent’s current knowledge about the
target word establishes specific constraints on what your guess can be. You must generate a guess without repeated
letters from the English dictionary for the target word that is consistent with these constraints. Before you return
your guess, describe how it obeys all constraints and knowledge provided by the agent. When you return your guess
from the English dictionary, start with the phrase ”You think ” and do not say anything beyond providing your guess
for the target word. The environment was described to the agent like this: <Environment Description>

The agent’s current knowledge about the target word is the following:<Input prior/LLM-generated
posterior>. You must carefully read through all information the agent has provided. Never say anything
about the agent or tell the agent what decisions to make.

B.5. LLM-IDS

As previously mentioned, LLM-IDS retains the approximation posterior LLM for performing posterior updates given agent
interactions with the environment. Instead of having two posterior sampling and optimal policy LLMs, LLM-IDS employs
two LLMs for computing the expected regret and the information gain about optimal behavior, respectively, of each action
in a given state. The current posterior is supplied to both LLMs as input along with the current state and the candidate action

17

Toward Efficient Exploration by Large Language Model Agents

being evaluation, thereby requiring a total of 2 · |A| API calls to obtain the two |A|-dimensional vectors needed to solve the
information-ratio optimization problem.

Using the fact that finding the distribution over actions which minimizes the information ratio is a convex optimization
problem that places probability mass on at most two actions (Russo & Van Roy, 2018; Lu et al., 2023), we solve the
optimization problem near-optimally by discretizing the unit interval and searching over all pairs of actions.

For the combination lock environment, we know that the value of the optimal policy is exactly 1. Consequently, we charged
the expected regret LLM with simply computing the expected return E [Q⋆(st, a)] and used one minus this output value as
the expected regret. The expected regret LLM used the following system prompt and user prompt:

You are a conservative expected optimal action-value function estimator for helping an agent interacting with a
sequential decision-making environment. The environment was described to the agent as follows:<Environment
Description>. You will be give the agent’s current posterior distribution over the world and will also be given
a current state and a candidate action. With all of these inputs, you must provide a conservative estimate of the
expected cumulative return an agent will observe by taking the proposed action from the current state and then
following the optimal policy thereafter. Recall that the optimal-value function (also denoted as Q*) is the value
obtained from being in a particular state, taking a particular action, and following the optimal policy thereafter. So,
in other words, you are meant to evaluate the expected optimal-value function for the current state and candidate
action while taking an expectation with respect to the agent’s current posterior distribution. Remember that you are
estimating value by taking the candidate action in the current state and then having all future actions selected by the
optimal policy. The optimal policy will only make future action selections at future states but will not be able to
reverse or change the use of the candidate action in the current state. You must take an expectation with respect to
the agent’s current posterior distribution to compute the expected optimal action-value function. Your estimate of the
expected optimal action-value function must be conservative, which means that it is okay if the estimate you return is
smaller than the true expected optimal action-value function but it absolutely cannot be larger than the true expected
optimal action-value function. Naturally, you are being the most helpful when the estimate you provide is as close to
the true expected optimal action-value function as possible while still being a lower bound and not going over it. You
must produce a real and concrete numerical value as your estimate and say it as a decimal (no fractions) after ”Final
expected optimal action-value: ”. Whenever possible, show brief calculations with concrete numbers before you give
your estimate to quickly justify it. Say nothing after ”Final expected optimal action-value: ” other than your estimate.

The agent’s posterior distribution reflecting knowledge and uncertainty about the world is as follows:<Input
prior/LLM-generated posterior>. The current state is as follows:<Current state>. Please produce
a conservative expected action-value function estimate for the following candidate action:<Candidate action>.
If needed, round your answer to no more than three decimal places.

The information gain LLM used the following system prompt and user prompt:

18

Toward Efficient Exploration by Large Language Model Agents

You are a conservative information gain estimator for helping an agent interacting with a sequential decision-making
environment. The environment was described to the agent as follows:<Environment Description>. You will
be given the agent’s current posterior distribution over the world and will also be given a current state and a candidate
action. With all of these inputs, you must provide a conservative estimate of how much information the agent will
gain about optimal behavior in the environment by taking the proposed action from the current state. Remember that
information gain is computed as mutual information or the reduction between prior and posterior entropy, which
is measured in bits. Your estimate of the information gained about optimal behavior by taking this action in the
environment must be conservative, which means that it is okay if the estimate you return is smaller than the true
information gain but it absolutely cannot be larger than the true information gain. Naturally, you are being the most
helpful when the information gain estimate you provide is as close to the true information gain as possible without
going over it. You must produce a real and concrete numerical value as your estimate and say it as a decimal (no
fractions) after ”Final information gain: ”.Whenever possible, show brief calculations with concrete numbers before
you give your estimate to quickly justify it. Say nothing after ”Final information gain: ” other than your estimate.

The agent’s posterior distribution reflecting knowledge and uncertainty about the world is as follows:<Input
prior/LLM-generated posterior>. The current state is as follows: <Current state>. Please produce
a conservative information gain estimate (measured in bits) for the following candidate action:<Candidate
action>. If needed, round your answer to no more than three decimal places. Remember that sub-optimal or
incorrect actions can be informative and information can be gained about optimal behavior without taking an optimal
action.

C. Additional Results
As noted by Krishnamurthy et al. (2024), the financial and temporal costs of running LLM agents can be quite significant.
With only 20 trials, it would be presumptuous to make any sweeping claims about superior performance of one method
relative to others. Fortunately, the goal of our multi-armed bandit experiment is aimed at at a relativistic comparison in the
quality of exploration with PSRL and LLMs relative to classic TS. To this end, we borrow the surrogate statistics employed
by Krishnamurthy et al. (2024) to provide deeper insight into the long-term exploratory behavior of LLM-based PSRL.
Figure 8 reports the suffix failure frequency, where a suffix failure at time period t is a binary statistic defined as 1 if the
optimal action A⋆ is never chosen in time periods [t, T] and 0 otherwise. Clearly, an agent experiencing a large number of
suffix failures early on in learning would be unlikely to identify A⋆ when run for a larger number of time periods. Figure 9
reports the (scaled) minimum action frequency, which reports at time period t the frequency of the least-chosen action in
the first t time periods: 1

t ·min
a∈A

∣∣{At′ | t′ ∈ [t], At′ = a}
∣∣. The statistic is scaled by |A| to reside in [0, 1]. As an agent’s

knowledge of the world accumulates, one would naturally expect an agent to gradually cease selection of some (ideally,
sub-optimal) actions and incur lower minimum action frequencies. Together, these two surrogate statistics paint a picture of
whether or not the exploration of a LLM bandit agent gravitates toward A⋆ over time.

19

Toward Efficient Exploration by Large Language Model Agents

Figure 8. Suffix failure frequency for a 5-armed Bernoulli bandit with ∆ = 0.2. A suffix failure occurs at time t if A⋆ is never chosen in
time periods [t, T].

Figure 9. Scaled minimum action frequency for a 5-armed Bernoulli bandit with ∆ = 0.2. At time period t, this is the average frequency
of the least-chosen action in time periods [1, t].

20

Toward Efficient Exploration by Large Language Model Agents

Figure 10. A scatter plot of suffix failure frequency vs. minimum action frequency for Thompson sampling and our LLM-based PSRL
with varying κsampling.

21

