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ABSTRACT

We here introduce combinations of state abstractions and options that preserve
representation of near-optimal policies. We define ¢-relative options, a general
formalism for analyzing the value loss of options paired with a state abstraction,
and prove that there exist classes of ¢-relative options that preserve near-optimal
behavior in any MDP. We conclude by proving that ¢-relative options naturally
induce a hierarchy, and that this hierarchy also preserves near-optimal behavior
with value loss increasing as a function of the hierarchy’s depth.

1 INTRODUCTION

We here explore the role of state and action abstractions in the context of Reinforcement Learning
(RL), as pictured in Figure[Ta] Our objective is to clarify which combinations of state and action
abstractions support near-optimal behavior in Markov Decision Processes (MDPs).

A state abstraction defines an aggregation function that translates the environmental state space S
into S, where usually |S,| < |S|. With a smaller state space, learning algorithms can learn with
less computation, space, and even samples (Dearden & Boutilier, [1997; Dietterichl, 2000
2003, Jong & Stone, [2003}; [Odalric-Ambrym et al., [2013; [Hostetler et al., 2014} Jiang et al., [2015).
However, throwing away information about the state space might destroy representation of good
policies. An important direction for research is to clarify which state abstractions can preserve near-

optimal behavior (Dean & Givan, [1997; [Andre & Russell, 2002; [Li et all, 2006} [Hutter, 2014} Jiang
let all 2015} [Abel et al., 2016} 2019).

We take an action abstraction to be a replacement of the actions of an MDP, A4, with a set of op-
tions 1999), O, which encode long-horizon sequences of actions. Options are known
to aid in transfer (Konidaris & Barto|, 2007; Brunskill & Li| 2014} Topin et al.,2015)), encourage bet-
ter exploration (Bacon et al., 2017 [Fruit & Lazaric, 2017; [Machado et al., 2018} [Tiwari & Thomas),
[2019), and make planning more efficient (Mann & Mannor, 2014; [Mann et al., 2015).
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(a) State-Action Abstraction in RL. (b) Forming a ground policy from a policy over ab-

stract states and ¢-relative options.

Figure 1: Reinforcement Learning with state abstraction and options: (a) an augmentation of the
traditional RL loop wherein an agent reasons in terms of abstract states and chooses among options,

and (b) the process for inducing ﬂg’ 0,4 policy in the ground MDP, from a (¢, Oy, 74, 0,,) triple.
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The primary contribution of this work introduces combinations of state abstractions and options that
preserve representation of near-optimal behavior. We define ¢-relative options, a general formalism
for analyzing the value loss of pairs (¢, O), and prove there are classes of ¢-relative options that
preserve near-optimal behavior in any MDP. We conclude by proving that this recursively yields a
hierarchy that preserves near-optimal behavior under assumptions on the hierarchy’s construction.

1.1 BACKGROUND
We first provide brief background on state abstractions and options.

Definition 1 (State Abstraction): A state abstraction ¢ : S — Sy maps each ground state, s € S
into an abstract state, s4 € Sg. We denote policies over abstract states as T4, defined as a mapping
S¢ — A

Critically, a policy over abstract states induces a unique policy over ground states:

Remark 1. Any deterministic policy defined over abstract states, Ty : Sg — A induces a unique
policy in the original MDP. We denote this policy as Wg, and the space of all policies representable

in this manner as Hg.

For each s € S, we may pass it through the abstraction to yield s4 = ¢(s). To specify an action, we
then query 74 (s4). Using this mapping process we can evaluate a given abstract policy, 7, by the
value of its induced ground policy, Wg. We now define the sub-optimality induced by a given state
abstraction ¢.

Definition 2 (¢-Value Loss): The value loss associated with a state abstraction ¢ denotes the degree
of sub-optimality attained by applying the best abstract policy. More formally:

L(¢) := min |[V* —V™

Ty €lly

(D

o0

Next we introduce options, a popular formalism for augmenting the action space of an agent.

Definition 3 (Option (Sutton et al.,[1999)): An option o € O is a triple (Z,, 3o, 7o), where T, C S
is a subset of the state space denoting where the option initiates; 5, C S, is a subset of the state
space denoting where the option terminates; and m, : S — A is a deterministic policy prescribed
by the option o.

Options define abstract actions; the three components indicate where the option o can be executed
(Z,), where the option finishes (5,), and what to do in between these two conditions (7).

2 STATE-ACTION ABSTRACTIONS

Together, state and action abstractions can distill complex problems into simple ones (Jonsson &
Barto, 2001} [Ciosek & Silver, 2015}, Bai et al., 2016). Our treatment of state-action abstraction is
related to generating options from a bisimulation metric (Ferns et al., [2004) as proposed by |Cas-
tro & Precup| (2011), but distinct from state-action homomorphisms, as explored by [Ravindran
(2003), |Taylor et al.| (2008) and Majeed & Hutter] (2019). We here introduce a novel means of
combining state abstractions with options, defined as follows:

Definition 4 (¢-Relative Option): For a given ¢, an option is said to be ¢-relative if and only if there
is some sy € Sy such that, forall s € S:

IO(S) = 8 € S¢, 50(5) =s¢ S¢, To € st (2

wherels, : {s | ¢(s) = sy} — Alis the set of ground policies defined over states in sg, and s € sg
is shorthand for s € {¢(s') = s4 | Vsrcs}. We denote Oy as any non-empty set that 1) contains
only ¢-relative options, and 2) contains at least one option that initiates in each s4 € S.

Intuitively, this means we define options that initiate in each abstract state and terminate once the
option leaves the abstract state. For example, in the classical Four Rooms domain, if the state
abstraction turns each room into an abstract state, then any ¢-relative option in this domain would
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be one that initiates anywhere in one of the rooms and terminates as soon as the option leaves that
room. This gives us a powerful formalism for seamlessly combining state abstractions and options.

We henceforth denote (¢, O,) as a state abstraction paired with a set of ¢-relative options. We first
show that, similar to Remark any (¢, O,) gives rise to an abstract policy over Sy and Oy that also
induces a unique policy in the original MDP (over the entire state space). All proofs are presented
in the appendix.

Theorem 1. Every deterministic policy defined over abstract states and ¢-relative options, 7s 0, :
Sy — Oy, induces a unigue Markov policy in the ground MDP, Wi’od) : S — A. We denote Hi,(%
as the set of policies in the original MDP representable by the pair (¢, Oy) via this mapping.

This theorem gives us a means of translating a policy over ¢-relative options into a policy over the
original state and action space, S and A. This process is visualized in Figure Consequently,
we can define the value loss associated with a set of options paired with a state abstraction: every
(¢, Oy) pair yields a set of policies in the original MDP, Hi 0, The value loss of ¢, Oy is the value

loss of the best policy in this set.

Definition 5 ((¢, Oy)-Value Loss): The value loss of (¢, Oy) is the smallest degree of suboptimality

achievable:
!
L(¢,04) := min V=V *%

7,04 €H0,04

3)

oo

To characterize the loss of various options, we require a final definition that clarifies what is meant
by an option class. We adopt a new formalism that characterizes sets of options as containing
representative options, defined as follows.

Definition 6 (Option Class): Let (9;” denote the set of all possible ¢-relative options for a given ¢.

For every sy, consider a two-place predicate on options of this set, ps, : O:;ls” X (’);“ — {0,1}. A
set of ¢-relative options is said to belong to the class defined by ps,,, which we denote Oy ,, if and
only if:
vS¢€S¢ vole(’);“ 30260¢~p : p8¢ (01702)' (4)
Intuitively, a class of options consists of choosing a small set of representative options from the
set of all possible options, and treating those representative options as the set to reason with, O ,,.
The trick is to choose the representative options appropriately. The predicate defines what counts as
a representative option: if ps, is true of a pair (01,02), then oy is said to be representative of 02, and
vice-versa. In the trivial case, the predicate defines equivalence. If the two options are the same, it
is true. In this case, we just recover the set of all options (so every option is its own representative).
Instead, we might describe a class of options as those that transition to the same next abstract state
from the given s,4; then, we need only retain one such option to adhere to this class. Shortly, we will
define two classes that possess desirable theoretical properties.

With our definitions in place, we now pose the central question of this work:

Central Question: Are there classes of options that, when paired with well-behaved state
abstractions, yield a relatively small L(¢, O4)?

Our main result answers this question in the affirmative; the following two option classes preserve
near-optimality. The option classes we introduce guarantee € closeness of values or models, building
upon state abstraction classes from prior work (Dean & Givan, [1997} |Li et al., [2006} Jiang et al.,
2015;|Abel et al.,|2016). More concretely:

Similar Q*-Functions (O q+): The e-similar Q* predicate defines an option class where, for all s4:

Ps, (01,02) = max @5, (s,01) — Q5 (s,02)| < eq, where: )

Q:,(5:0) 1= R(s,mo(5)) + 7 D T(s | 5.70(5)) (15" € 55)Q%, (5',0) + 1(s' & 5)V*(5"))
s'eS
(6)
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Similar Models (Og . ): The e-similar T' and R predicate defines an option class where, for all s4:

!’ !’
s s
Ts,ol =T,

S,02

p5¢(01,02) = ’ <er AND |[|Rs 0, — Rs0,|,, < €r, Where: 7

R, , and T;‘:O are shorthand for the reward model and multi-time model of [Sutton et al.|(1999).
Our main result establishes the bounded value loss of these two classes.

Theorem 2. (Main Result) For any ¢, the two introduced classes of ¢-relative options satisfy:

€ er + |S|lerVMAX
L(¢,04,qx) < 1 f77 L(p,0p0.) < i |1|T’y )

(®)

3 HIERARCHIES

We next highlight how the prescribed combination of state abstraction and options can underlie hi-
erarchical RL (Dayan & Hinton, |1993; |Parr & Russell, 1998; Dietterich, [2000; Barto & Mahadevan),
2003;Jong & Stone}|2008;Bai & Russell, 2017;|Konidaris et al.,|2018;Nachum et al.|[2019). Specif-
ically, this section presents an extension of Theorem [2[applied to hierarchies consisting of (¢, Oy)
pairs. We show the value loss compounds linearly if we construct a hierarchy using algorithms that
generate a well-behaved ¢ and Oy.

To do so, we require two definitions and additional notation (a table summarizing our notation is
presented in the appendix). We first define a hierarchy as n sets of (¢, Oy) pairs.

Definition 7 ((¢, O,)-Hierarchy): A (¢, Oy)-Hierarchy, denoted H,, is a list of n state abstrac-

tions, o™, and a list of n sets of ¢-relative options, O("), where the components (Z,[5,m) of
each of the i-th set of options, Oy ; are defined over the (i — 1)-th abstract state space Sy ;_1 =

{¢i71(¢i72(~ .. d)l(s) .. )) ‘ s € S}

We next introduce additional notation to refer to values, states, options, and policies at each level of
the hierarchy. We denote 7, : Sy — Ogy  as the level n policy encoded by the hierarchy, with
I1,, the space of all policies encoded in this way. We let ¢ (s) = ¢;(. .. ¢1(s)), with s a state in the
ground MDP. We further denote V; as the i-th level’s value function, defined as follows for some
ground state s:

Vi (s) := V™ (¢'(s)) = max (Ri (s5,0) + Z T, (s | si,0) ‘/;7"(5/)> ,  where: )

0€Q; jrr3

Ri(si,0):= Y wi(si))Re, 100 Tilsi[si,0) = > > wilsi))Ts/ "o,

S$i—1€S; Si—1€8i s, ,E€S; 1

where again R, , and T;?:O are defined according to the multi-time model (Sutton et al., [1999),

s; € Sy, is alevel i state resulting from ¢'(s), and w; is an aggregation weighting function for level
1 (L1 et al., 2006). Note that V) is the ground value function, which we refer to as V' for simplicity.

3.1 HIERARCHY ANALYSIS

Our aim is to generalize Theorem [2| arbitrary hierarchies, H,,. To do so, we make two key observa-
tions. First, any policy ,, represented at the top level of a hierarchy H,, also has a unique Markov
policy in the ground MDP, which we denote 7% (in contrast to 7, which moves the level n policy
to level n — 1). We summarize this fact in the following lemma:
Lemma 1. Every deterministic policy m; defined according to the i-th level of a hierarchy, H,,
induces a unique policy in the ground MDP, which we denote !

i

To be precise, note that TI';L specifies the level ¢ policy m; mapped into level 7,1, whereas W? refers
to the policy at 7m; mapped into 7. The second key insight is that the same notion of value loss from
Definition [2|can be extended to hierarchies, H,,.
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Definition 8 (H,,-Value Loss): The value loss of a depth n hierarchy H,, is the smallest degree of
suboptimality across all policies representable at the top level of the hierarchy:

L(H,):= min ||[V*-— v

T €11,

(10)

oo

Note that the above value functions are the value function in the original MDP; this bound evaluates
how suboptimal the best hierarchical policy is in the ground MDP. We next show that there exist
value-preserving hierarchies by bounding the above quantity for well constructed hierarchies. To
prove this result, we require two assumptions.

Assumption 1. The value function is consistent throughout the hierarchy. That is, for every level of
the hierarchy i € [1 : n), for any policy m; over states Sy ; and options O ;, its value for all states
s, when grounded one level down, is similar:

v (" '(s)) = V™ (Ms))‘ <k (11)

max
seS

Assumption 2. Subsequent levels of the hierarchy can represent policies similar in value to the

m
previous level. That is, for every i € [1 : n — 1], letting ¢ = argmin,_ ¢y, ||[V5" — Vg ||oc, there
is a small £ such that:
o .
|ZARRNSS VARES

g f <. (12)

min
1 +
Tit1 eHi+1

oo

We strongly suspect that both assumptions are true given the right choice of state abstractions, op-
tions, and methods of constructing abstract MDPs. As some motivating evidence, a claim closely
related to Assumption [1|is proven by |Abel et al.|(2016) as Claim 1, and Assumption [2|is of sim-
ilar structure to our own Theorem [2] Regardless, these two assumptions (along with Theorem [2))
give rise to hierarchies that can represent near-optimal behavior. We present this fact through the
following theorem:

Theorem 3. Consider two algorithms: 1) Ay: given an MDP M, outputs a ¢, and 2) Ap,: given
M and a ¢, outputs a set of options O such that L(¢,O) < eo. Then, under Assumptionsand
by repeated application of Ay and Ao, we can construct a hierarchy of depth n such that

L(Hy) = n(x + 1), (13)

where ( is some upper bound on o (and is the same value that appears in Assumption 2)).

4 DISCUSSION

We introduce ¢-relative options, a simple but expressive formalism for combining state abstractions
with options. Notably, this method builds options from a ¢ function. Using Theorem |1} we prove
that any deterministic policy over abstract state and ¢-relative options induces a single unique policy
in the original MDP. This lets us then define the quantity L(¢,O,), a coherent notion of value
loss extended to capture near-optimality of joint state-action abstractions. We introduce two option
classes that trim the space of options down to a smaller representative set. Our main result proves
that these two option classes preserve near-optimality in any MDP. We further show that by a simple
construction, we can form hierarchies out of ¢-relative options that also preserve near-optimality.
We take these results to serve as a concrete path toward principled abstraction discovery and use.

We are next interested in using insights offered by the analysis presented here to develop reinforce-
ment learning algorithms to find and exploit powerful abstractions that are guaranteed to preserve
high quality decision making. To this end, our core direction for future work is to develop a practical
option discovery algorithm that 1) offers synergy with state abstraction, and 2) is guaranteed to retain
near-optimal behavior. Additionally, we are interested in providing support for both Assumption [I]
and 2| as we suspect both are in fact true for many constructions of hierarchies.
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1 PROOFS

We here present proofs of each introduced result and Table 1 summarizing notation.

Theorem 1. Every deterministic policy defined over abstract states and ¢-relative options, 7y o, :
Sy — Oy, induces a unique Markov policy in the ground MDP, Wﬁ)(% : S — A. We denote Hg,o(b
as the set of policies in the original MDP representable by the pair (¢, Oy) via this mapping.

Proof. Consider an arbitrary deterministic policy 74 0,. By definition, this policy assigns one
option to each abstract state. Let O, denote the set of options this policy assigns.

By construction of ¢-relative options, for every ground state s € S there is one unique option
04(s) € Ox that can be executed in s.

Therefore, we construct a policy wg,% as the combination of option policies in O,. Specifically,
letting 7, denote the option policy of the option in O that is assigned to o(s):

75 0,(58) = Toy) (5) (16)

This construction is visualized in Figure 2. O

o 0
2 ! To,(8) s € %
<
o ”g 0,(s) = Tea(s) 8
o1 3 e Tos (S) S € @
To,(S) s €E %
(a) Assignment of options to abstract states (b) Construction of Wi 0y

via T,04-

Figure 2: The process of inducing a grounded policy 77};’04) from 7y o,

Theorem 2. (Main Result) For any ¢ such that L(¢) < e, the two introduced classes of ¢-relative
options satisfy:

5 en + |Sler VMAX
L(6, 0pg:) < 2, L(6, 0y ar.) < SR FISETVMAX

17
- - (17
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10} A state abstraction function.
Oy A set of ¢-relative options.
7,0, A policy that maps each abstract state to an option.

wjg_’@#) A policy over S and A, induced by 74, 0, .

H, A hierarchy of depth n, denoting (¢("™), O;n)).

#™  Alist of n state abstractions, where ¢; : Sg ;1 — Sy..

i The i-th state abstraction in a list ¢(™).

o The result of applying the first ¢ state abstractions to s, ¢;(. .. ¢1(s)).

Ss,i The i-th abstract state space.

v The value function of level ¢ policy 7 defined according to R;, T;, Oy i, S¢.i.

Os.i The options available at level 7, with each option component defined over states in Sy ;1.
R; The reward function of level <.

T; The reward function of level <.

™ The policy over level i of the hierarchy

7T%L A policy over Sy ;1 and Oy ;_1, induced by ;.
wzl} A policy over S and A, induced by ;.

Table 1: Notation

We prove this claim using two separate proofs, the first targets the Oy - class of options, and the
second, Oy . .

Proof: (L(¢, 0p,q:) < 1%)

1—y
Y
Consider L(¢, Oy qx) = minﬂio ent , MaXses [V*(s) — V" *%(s)]. Since V*(s) > V7(s)
104 =760y

for all 7, we henceforth drop the absolute value for convenience.

To proceed, we first define 0:¢ to be the ¢-relative option that executes 7* in every state and termi-
nates when it leaves the abstract state s:

05, = Vses (Lo (s) = ¢(s) = sy, (18)
B(s) = ¢(s) # s, (19)
w(s) = 7*(s)). (20)

Note that since o, always chooses actions according to 7*, that Q7 _ (s, 03,) = V*(s) (where @,
is defined according to Equation 6).

Then, by the Q7 predicate, we can construct a policy over abstract states and options ji4 0, € Iy 0,
with the following property:

VS¢€S¢,S€S¢ : QZ¢(sa 0:¢) - de) (87 He,04 (8¢)) < €Q- 2n
Note that 114 0, (s4) outputs an option. As in Equation 21, we henceforth denote s4, = ¢(s) and
correspondingly s/, = $(s’).
Then it must be the case that

v
L(¢,04,q:) < max V*(s) — V"% (s). (22)

Let Q; (s, 0) denote the expected discounted reward of executing option o, then executing ¢ options
under p4, 0, , then following the optimal policy thereafter. Note that

4
lim Q7 (s, 15,0, (59)) = V"4 (s), (23)
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because Q; (s, 1g,0,(54)) is the expected discounted reward of executing ¢ 4 1 options under

He,0,, then following the optimal policy thereafter.

We next show by induction on ¢ that

v
max V*(s) — yheo, (s) = max lim V*(s) — Qi (s, tg,0,(5¢)) <

seS sES t—o0

In particular, we wish to show that

t

Vien s max V7 (s) — Q7 (s: 16,0, (85)) < > e

=0

(Base Case)
Whent =0, forall s € S,

QS(S7 He,04 (S¢)) = Q:¢ (57 He,0, (S¢))7

(24)

(25)

(26)

because both quantities represent the expected discounted reward of executing the option pi4. 0, (5¢)

then following the optimal policy thereafter. It follows that

max V*(S) - QS(S’ He,04 (5¢)) = max V*(S) - Q:d,(sa He,04 (8¢'))>

sES seS

_ * *
- I?eaSX Qs¢ (Sa o

< €Q,

0
>,
=0

where the inequality holds by definition of g 0, .

(Inductive Case)
We assume as the inductive hypothesis that

k
max V" (s) — Qi(s, 16,0, (56)) < > eon,
i=0
and want to show that
k+1

max V*(s) = Qf11(5, 19,0, (59)) < Y _e@7"-

sES :
1=0

To begin, fix s € S and consider

V*(S) - QZ—H(S’ He,04 (345))

=V(s) - (Ro(s,/w,% (5) + Y To(s'|5, 16,0, (59)) Q1 (5, 16,0, (5))

s'eS

=V*(5) = Ro(5, 16,0, (56)) = Y Tol(5'|5, 11,0, (56)) Q1 (5", 16,0, (5))

s'eS

where R, and T, indicate the reward and multi-time option models from Sutton et al. (1999).

3¢,) - Q>:¢ (57 He¢,04 (S¢))7

27)
(28)
(29)

(30)

3D

(32)

(33)

(34)

(35)
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Now, subtract and add ), . s T (5|5, p1g,0,(5¢))V*(s"):

= V*(8) = Ro(5, 16,0, (50)) = Y Tol(s'[5, 16,0, (56))V*(5) (36)
s'eS
+ D To(8 |8, 119,0, (30))VF(5') = D Tol'|5, 11,0, (56)) Q5 (s 1.0, () (37
s'eS s'eS
= V(s) = Q%, (5 1p,0,(50)) (38)
+ Z TO(S/|S, He,04 (8¢)) [V*(S,) - QZ(S/7M¢>’O¢ (S;Sﬂ (39)
s'eS
= Q5,(s05,) — Q5 (s, 116,0,(56)) (40)
+ D To(s 5, 16,0, (59)) [V(5') — Qi 1,0, (5)] (41)
s'eS
< et Y To(s |5, 1,0, (56)) [V(5') = Qi(ss 0, ()] 42)
s'eS

by definition of 1y o,. Continuing, we have that:

= €Q + Z ZP(‘S/a n|s’ﬂ¢70¢ (s¢))7n [V*(S/) - QZ(S/,N¢,O¢(S;5)] 43)
s’eSn=1

< EQ+ZZPS nls, 16,0, () Zam, (44)
s'eSn=1

(45)

by the inductive hypothesis. Then:

gt X SR+ s s, (50) Zsm (46)
s’eSn=0
= sQ—&-’stQv Z ZP s',n+1ls, pg.0,(56))7" 47)
s’'eSn=0
k
< ety Z e’ -1 (48)
i=0
k1
= D et (49)
=0

since P(s’,n + 1[s, 14,0, (5¢)) is a probability distribution and + is less than 1.

All together, we’ve shown that V*(s) — Q5,1 (s, tg,0,(5¢)) < Zfiol eqgy! for all s € S, which
implies that
k41

max V*(s) = Qi1 (5, 19,0, (59)) < D07, (50)
i=0
as desired.
It follows by induction that
t .
View : max V*(s) — Q; (s, 1,0, (50)) < Z; e’ (5D
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Therefore,
L(9,0s.q:) < maxV"(s) - Vaea (s) (52)
= max lim V7(s) — Q; (s, ng,0, (s9)) (53)
< lun, ; e’ (54)
B 1% (55)

which completes the proof.

Proof. (L(¢, Oy ) < EHEETYMAY)

Fix s € S. Let s4 = ¢(s). Consider any ¢-relative option o; that initiates in s,. Then by the M.
predicate, there exists an option o2 € Oy such that
|| 5,01 sozuooSETANDHRSm_Rs,02|‘oo§5R- (56)

Now, we consider the difference in optimal Q-values between o and 02. We first have that:

Q:,(5:01) = R(5,0,(5)) +7 3 T(s | 5,70,()) (1(' € )@, (5 01) + 1(s & 5)V*())

s'eS
o(8, 01 —I—ZT "Is,01)V*(s").

s'eS
(57)
By symmetry,
Q3,(5,02) = Ro(s,02) + Z Ty(s'|s,02)V*(s"). (58)
s'eS
Therefore,
Q2 (s,01) = Q% (5, 02)] = | Ro(s,01) = Ro(s,00) + ) To(s']s,0)V*(s') -
s’eS
Y To(s'ls,00)V*(s)
s’eS
< [Ro(s,01) = Ro(s,02) [ + | Y (To(s']s,01) = To(s'|5,02)) V*(5')]
s’eS
< [Ro(s,01) = Ro(s,02)[ + Y |To(s'ls,01) = To(s'|s, 02)[|V*(s")]
s’eS
< ep+ |Sler VMAX,
(59)

by the model similarity assumption. We have now shown that options with similar models have
similar Q-values with e = eg + |S|er VMAX. Therefore, by the previous result,

er + |S|lerVMAX
1—7v '

L(¢,04 0m.) < (60)

O
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Lemma 1. Every deterministic policy m; defined according to the i-th level of a hierarchy, H,,

induces a unique policy in the ground MDP, which we denote 7Tjl .

Proof. The result follows from an identical strategy to the proof of Theorem 1. O

Theorem 3. Consider two algorithms:
1. Ay: given an MDP M, outputs a ¢.
2. Ap,: given M and a ¢, outputs a set of options O such that L(¢, O) < .

Then, under Assumptions I and 2, by repeated application of Ay and Ao,, we can construct a
hierarchy of depth n such that
L(H,) =n(k+1¥), (61)

where { is some upper bound on €4 + ¢ (and is the same value that appears in Assumption 2).

Proof. We present the proof of the bound for a two level hierarchy, but the same strategy generalizes
to n levels via induction.

Let ¢ be the known upper bound for L(¢, O). Then:

1
By Theorem 2: min [|[Vy = Vg |leo < £ (62)
mp €I
+
By Assumption 1: Ve Vo' = Voo <K (63)
+ o 1
Letting 7§ = argmin ||V; — V' ||, by Assumption 2: min ||V = V| <€ (64)
m €11y myEelly
+ 4
By Assumption 1 Vorem IV = Vo2 e <& (65)
2 2
Therefore, by the triangle inequality:
4
min [|[Vy — V52 [|eo < 2K + 20. (66)
mo €Il
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